gvisor/pkg/sentry/platform/kvm/machine_amd64.go

167 lines
5.5 KiB
Go
Raw Normal View History

// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// +build amd64
package kvm
import (
"fmt"
"reflect"
"syscall"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0/pagetables"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
)
// initArchState initializes architecture-specific state.
func (m *machine) initArchState(vCPUs int) error {
// Set the legacy TSS address. This address is covered by the reserved
// range (up to 4GB). In fact, this is a main reason it exists.
if _, _, errno := syscall.RawSyscall(
syscall.SYS_IOCTL,
uintptr(m.fd),
_KVM_SET_TSS_ADDR,
uintptr(reservedMemory-(3*usermem.PageSize))); errno != 0 {
return errno
}
return nil
}
// initArchState initializes architecture-specific state.
func (c *vCPU) initArchState() error {
var (
kernelSystemRegs systemRegs
kernelUserRegs userRegs
)
// Set base control registers.
kernelSystemRegs.CR0 = c.CR0()
kernelSystemRegs.CR4 = c.CR4()
kernelSystemRegs.EFER = c.EFER()
// Set the IDT & GDT in the registers.
kernelSystemRegs.IDT.base, kernelSystemRegs.IDT.limit = c.IDT()
kernelSystemRegs.GDT.base, kernelSystemRegs.GDT.limit = c.GDT()
kernelSystemRegs.CS.Load(&ring0.KernelCodeSegment, ring0.Kcode)
kernelSystemRegs.DS.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.ES.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.SS.Load(&ring0.KernelDataSegment, ring0.Kdata)
kernelSystemRegs.FS.Load(&ring0.UserDataSegment, ring0.Udata)
kernelSystemRegs.GS.Load(&ring0.UserDataSegment, ring0.Udata)
tssBase, tssLimit, tss := c.TSS()
kernelSystemRegs.TR.Load(tss, ring0.Tss)
kernelSystemRegs.TR.base = tssBase
kernelSystemRegs.TR.limit = uint32(tssLimit)
// Point to kernel page tables.
kernelSystemRegs.CR3 = c.machine.kernel.PageTables.FlushCR3()
// Set the CPUID; this is required before setting system registers,
// since KVM will reject several CR4 bits if the CPUID does not
// indicate the support is available.
if err := c.setCPUID(); err != nil {
return err
}
// Set the entrypoint for the kernel.
kernelUserRegs.RIP = uint64(reflect.ValueOf(ring0.Start).Pointer())
kernelUserRegs.RAX = uint64(reflect.ValueOf(&c.CPU).Pointer())
kernelUserRegs.RFLAGS = ring0.KernelFlagsSet
// Set the system registers.
if err := c.setSystemRegisters(&kernelSystemRegs); err != nil {
return err
}
// Set the user registers.
if err := c.setUserRegisters(&kernelUserRegs); err != nil {
return err
}
// Set the time offset to the host native time.
return c.setSystemTime()
}
// SwitchToUser unpacks architectural-details.
func (c *vCPU) SwitchToUser(regs *syscall.PtraceRegs, fpState *byte, pt *pagetables.PageTables, flags ring0.Flags) (*arch.SignalInfo, usermem.AccessType, error) {
// See below.
var vector ring0.Vector
// Past this point, stack growth can cause system calls (and a break
// from guest mode). So we need to ensure that between the bluepill
// call here and the switch call immediately below, no additional
// allocations occur.
entersyscall()
bluepill(c)
vector = c.CPU.SwitchToUser(regs, fpState, pt, flags)
exitsyscall()
switch vector {
case ring0.Syscall, ring0.SyscallInt80:
// Fast path: system call executed.
return nil, usermem.NoAccess, nil
case ring0.Debug, ring0.Breakpoint:
info := &arch.SignalInfo{Signo: int32(syscall.SIGTRAP)}
return info, usermem.AccessType{}, platform.ErrContextSignal
case ring0.PageFault:
bluepill(c) // Probably no-op, but may not be.
faultAddr := ring0.ReadCR2()
code, user := c.ErrorCode()
if !user {
// The last fault serviced by this CPU was not a user
// fault, so we can't reliably trust the faultAddr or
// the code provided here. We need to re-execute.
return nil, usermem.NoAccess, platform.ErrContextInterrupt
}
info := &arch.SignalInfo{Signo: int32(syscall.SIGSEGV)}
info.SetAddr(uint64(faultAddr))
accessType := usermem.AccessType{
Read: code&(1<<1) == 0,
Write: code&(1<<1) != 0,
Execute: code&(1<<4) != 0,
}
return info, accessType, platform.ErrContextSignal
case ring0.GeneralProtectionFault:
if !ring0.IsCanonical(regs.Rip) {
// If the RIP is non-canonical, it's a SEGV.
info := &arch.SignalInfo{Signo: int32(syscall.SIGSEGV)}
return info, usermem.AccessType{}, platform.ErrContextSignal
}
// Otherwise, we deliver a SIGBUS.
info := &arch.SignalInfo{Signo: int32(syscall.SIGBUS)}
return info, usermem.AccessType{}, platform.ErrContextSignal
case ring0.InvalidOpcode:
info := &arch.SignalInfo{Signo: int32(syscall.SIGILL)}
return info, usermem.AccessType{}, platform.ErrContextSignal
case ring0.X87FloatingPointException:
info := &arch.SignalInfo{Signo: int32(syscall.SIGFPE)}
return info, usermem.AccessType{}, platform.ErrContextSignal
case ring0.Vector(bounce):
return nil, usermem.NoAccess, platform.ErrContextInterrupt
default:
panic(fmt.Sprintf("unexpected vector: 0x%x", vector))
}
}