gvisor/pkg/sentry/kernel/sessions.go

509 lines
14 KiB
Go
Raw Normal View History

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package kernel
import (
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/refs"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// SessionID is the public identifier.
type SessionID ThreadID
// ProcessGroupID is the public identifier.
type ProcessGroupID ThreadID
// Session contains a leader threadgroup and a list of ProcessGroups.
//
// +stateify savable
type Session struct {
refs refs.AtomicRefCount
// leader is the originator of the Session.
//
// Note that this may no longer be running (and may be reaped), so the
// ID is cached upon initial creation. The leader is still required
// however, since its PIDNamespace defines the scope of the Session.
//
// The leader is immutable.
leader *ThreadGroup
// id is the cached identifier in the leader's namespace.
//
// The id is immutable.
id SessionID
// ProcessGroups is a list of process groups in this Session. This is
// protected by TaskSet.mu.
processGroups processGroupList
// sessionEntry is the embed for TaskSet.sessions. This is protected by
// TaskSet.mu.
sessionEntry
}
// incRef grabs a reference.
func (s *Session) incRef() {
s.refs.IncRef()
}
// decRef drops a reference.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (s *Session) decRef() {
s.refs.DecRefWithDestructor(func() {
// Remove translations from the leader.
for ns := s.leader.pidns; ns != nil; ns = ns.parent {
id := ns.sids[s]
delete(ns.sids, s)
delete(ns.sessions, id)
}
// Remove from the list of global Sessions.
s.leader.pidns.owner.sessions.Remove(s)
})
}
// ProcessGroup contains an originator threadgroup and a parent Session.
//
// +stateify savable
type ProcessGroup struct {
refs refs.AtomicRefCount // not exported.
// originator is the originator of the group.
//
// See note re: leader in Session. The same applies here.
//
// The originator is immutable.
originator *ThreadGroup
// id is the cached identifier in the originator's namespace.
//
// The id is immutable.
id ProcessGroupID
// Session is the parent Session.
//
// The session is immutable.
session *Session
// ancestors is the number of thread groups in this process group whose
// parent is in a different process group in the same session.
//
// The name is derived from the fact that process groups where
// ancestors is zero are considered "orphans".
//
// ancestors is protected by TaskSet.mu.
ancestors uint32
// processGroupEntry is the embedded entry for Sessions.groups. This is
// protected by TaskSet.mu.
processGroupEntry
}
// Originator retuns the originator of the process group.
func (pg *ProcessGroup) Originator() *ThreadGroup {
return pg.originator
}
// IsOrphan returns true if this process group is an orphan.
func (pg *ProcessGroup) IsOrphan() bool {
pg.originator.TaskSet().mu.RLock()
defer pg.originator.TaskSet().mu.RUnlock()
return pg.ancestors == 0
}
// incRefWithParent grabs a reference.
//
// This function is called when this ProcessGroup is being associated with some
// new ThreadGroup, tg. parentPG is the ProcessGroup of tg's parent
// ThreadGroup. If tg is init, then parentPG may be nil.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) incRefWithParent(parentPG *ProcessGroup) {
// We acquire an "ancestor" reference in the case of a nil parent.
// This is because the process being associated is init, and init can
// never be orphaned (we count it as always having an ancestor).
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors++
}
pg.refs.IncRef()
}
// decRefWithParent drops a reference.
//
// parentPG is per incRefWithParent.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) decRefWithParent(parentPG *ProcessGroup) {
// See incRefWithParent regarding parent == nil.
if pg != parentPG && (parentPG == nil || pg.session == parentPG.session) {
pg.ancestors--
}
alive := true
pg.refs.DecRefWithDestructor(func() {
alive = false // don't bother with handleOrphan.
// Remove translations from the originator.
for ns := pg.originator.pidns; ns != nil; ns = ns.parent {
id := ns.pgids[pg]
delete(ns.pgids, pg)
delete(ns.processGroups, id)
}
// Remove the list of process groups.
pg.session.processGroups.Remove(pg)
pg.session.decRef()
})
if alive {
pg.handleOrphan()
}
}
// parentPG returns the parent process group.
//
// Precondition: callers must hold TaskSet.mu.
func (tg *ThreadGroup) parentPG() *ProcessGroup {
if tg.leader.parent != nil {
return tg.leader.parent.tg.processGroup
}
return nil
}
// handleOrphan checks whether the process group is an orphan and has any
// stopped jobs. If yes, then appropriate signals are delivered to each thread
// group within the process group.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (pg *ProcessGroup) handleOrphan() {
// Check if this process is an orphan.
if pg.ancestors != 0 {
return
}
// See if there are any stopped jobs.
hasStopped := false
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.Lock()
if tg.groupStopComplete {
hasStopped = true
}
tg.signalHandlers.mu.Unlock()
})
if !hasStopped {
return
}
// Deliver appropriate signals to all thread groups.
pg.originator.pidns.owner.forEachThreadGroupLocked(func(tg *ThreadGroup) {
if tg.processGroup != pg {
return
}
tg.signalHandlers.mu.Lock()
tg.leader.sendSignalLocked(sigPriv(linux.SIGHUP), true /* group */)
tg.leader.sendSignalLocked(sigPriv(linux.SIGCONT), true /* group */)
tg.signalHandlers.mu.Unlock()
})
return
}
runsc: Support job control signals in "exec -it". Terminal support in runsc relies on host tty file descriptors that are imported into the sandbox. Application tty ioctls are sent directly to the host fd. However, those host tty ioctls are associated in the host kernel with a host process (in this case runsc), and the host kernel intercepts job control characters like ^C and send signals to the host process. Thus, typing ^C into a "runsc exec" shell will send a SIGINT to the runsc process. This change makes "runsc exec" handle all signals, and forward them into the sandbox via the "ContainerSignal" urpc method. Since the "runsc exec" is associated with a particular container process in the sandbox, the signal must be associated with the same container process. One big difficulty is that the signal should not necessarily be sent to the sandbox process started by "exec", but instead must be sent to the foreground process group for the tty. For example, we may exec "bash", and from bash call "sleep 100". A ^C at this point should SIGINT sleep, not bash. To handle this, tty files inside the sandbox must keep track of their foreground process group, which is set/get via ioctls. When an incoming ContainerSignal urpc comes in, we look up the foreground process group via the tty file. Unfortunately, this means we have to expose and cache the tty file in the Loader. Note that "runsc exec" now handles signals properly, but "runs run" does not. That will come in a later CL, as this one is complex enough already. Example: root@:/usr/local/apache2# sleep 100 ^C root@:/usr/local/apache2# sleep 100 ^Z [1]+ Stopped sleep 100 root@:/usr/local/apache2# fg sleep 100 ^C root@:/usr/local/apache2# PiperOrigin-RevId: 215334554 Change-Id: I53cdce39653027908510a5ba8d08c49f9cf24f39
2018-10-02 05:05:41 +00:00
// Session returns the process group's session without taking a reference.
func (pg *ProcessGroup) Session() *Session {
return pg.session
}
// SendSignal sends a signal to all processes inside the process group. It is
// analagous to kernel/signal.c:kill_pgrp.
func (pg *ProcessGroup) SendSignal(info *arch.SignalInfo) error {
tasks := pg.originator.TaskSet()
tasks.mu.RLock()
defer tasks.mu.RUnlock()
var lastErr error
for tg := range tasks.Root.tgids {
if tg.ProcessGroup() == pg {
tg.signalHandlers.mu.Lock()
infoCopy := *info
if err := tg.leader.sendSignalLocked(&infoCopy, true /*group*/); err != nil {
lastErr = err
}
tg.signalHandlers.mu.Unlock()
}
}
return lastErr
}
// CreateSession creates a new Session, with the ThreadGroup as the leader.
//
// EPERM may be returned if either the given ThreadGroup is already a Session
// leader, or a ProcessGroup already exists for the ThreadGroup's ID.
func (tg *ThreadGroup) CreateSession() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
return tg.createSession()
}
// createSession creates a new session for a threadgroup.
//
// Precondition: callers must hold TaskSet.mu for writing.
func (tg *ThreadGroup) createSession() error {
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Check if this ThreadGroup already leads a Session, or
// if the proposed group is already taken.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return syserror.EPERM
}
if s.id == SessionID(id) {
return syserror.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return syserror.EPERM
}
}
}
// Create a new Session, with a single reference.
s := &Session{
id: SessionID(id),
leader: tg,
}
// Create a new ProcessGroup, belonging to that Session.
// This also has a single reference (assigned below).
//
// Note that since this is a new session and a new process group, there
// will be zero ancestors for this process group. (It is an orphan at
// this point.)
pg := &ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: s,
ancestors: 0,
}
// Tie them and return the result.
s.processGroups.PushBack(pg)
tg.pidns.owner.sessions.PushBack(s)
// Leave the current group, and assign the new one.
if tg.processGroup != nil {
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
tg.processGroup.decRefWithParent(oldParentPG)
tg.processGroup = pg
} else {
// The current process group may be nil only in the case of an
// unparented thread group (i.e. the init process). This would
// not normally occur, but we allow it for the convenience of
// CreateSession working from that point. There will be no
// child processes. We always say that the very first group
// created has ancestors (avoids checks elsewhere).
//
// Note that this mirrors the parent == nil logic in
// incRef/decRef/reparent, which counts nil as an ancestor.
tg.processGroup = pg
tg.processGroup.ancestors++
}
// Ensure a translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.sids[s] = SessionID(local)
ns.sessions[SessionID(local)] = s
ns.pgids[pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = pg
}
return nil
}
// CreateProcessGroup creates a new process group.
//
// An EPERM error will be returned if the ThreadGroup belongs to a different
// Session, is a Session leader or the group already exists.
func (tg *ThreadGroup) CreateProcessGroup() error {
tg.pidns.owner.mu.Lock()
defer tg.pidns.owner.mu.Unlock()
// Get the ID for this thread in the current namespace.
id := tg.pidns.tgids[tg]
// Per above, check for a Session leader or existing group.
for s := tg.pidns.owner.sessions.Front(); s != nil; s = s.Next() {
if s.leader.pidns != tg.pidns {
continue
}
if s.leader == tg {
return syserror.EPERM
}
for pg := s.processGroups.Front(); pg != nil; pg = pg.Next() {
if pg.id == ProcessGroupID(id) {
return syserror.EPERM
}
}
}
// Create a new ProcessGroup, belonging to the current Session.
//
// We manually adjust the ancestors if the parent is in the same
// session.
tg.processGroup.session.incRef()
pg := &ProcessGroup{
id: ProcessGroupID(id),
originator: tg,
session: tg.processGroup.session,
}
if tg.leader.parent != nil && tg.leader.parent.tg.processGroup.session == pg.session {
pg.ancestors++
}
// Assign the new process group; adjust children.
oldParentPG := tg.parentPG()
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(oldParentPG)
})
tg.processGroup.decRefWithParent(oldParentPG)
tg.processGroup = pg
// Add the new process group to the session.
pg.session.processGroups.PushBack(pg)
// Ensure this translation is added to all namespaces.
for ns := tg.pidns; ns != nil; ns = ns.parent {
local := ns.tgids[tg]
ns.pgids[pg] = ProcessGroupID(local)
ns.processGroups[ProcessGroupID(local)] = pg
}
return nil
}
// JoinProcessGroup joins an existing process group.
//
// This function will return EACCES if an exec has been performed since fork
// by the given ThreadGroup, and EPERM if the Sessions are not the same or the
// group does not exist.
//
// If checkExec is set, then the join is not permitted after the process has
// executed exec at least once.
func (tg *ThreadGroup) JoinProcessGroup(pidns *PIDNamespace, pgid ProcessGroupID, checkExec bool) error {
pidns.owner.mu.Lock()
defer pidns.owner.mu.Unlock()
// Lookup the ProcessGroup.
pg := pidns.processGroups[pgid]
if pg == nil {
return syserror.EPERM
}
// Disallow the join if an execve has performed, per POSIX.
if checkExec && tg.execed {
return syserror.EACCES
}
// See if it's in the same session as ours.
if pg.session != tg.processGroup.session {
return syserror.EPERM
}
// Join the group; adjust children.
parentPG := tg.parentPG()
pg.incRefWithParent(parentPG)
tg.forEachChildThreadGroupLocked(func(childTG *ThreadGroup) {
childTG.processGroup.incRefWithParent(pg)
childTG.processGroup.decRefWithParent(tg.processGroup)
})
tg.processGroup.decRefWithParent(parentPG)
tg.processGroup = pg
return nil
}
// Session returns the ThreadGroup's Session.
//
// A reference is not taken on the session.
func (tg *ThreadGroup) Session() *Session {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup.session
}
// IDOfSession returns the Session assigned to s in PID namespace ns.
//
// If this group isn't visible in this namespace, zero will be returned. It is
// the callers responsibility to check that before using this function.
func (pidns *PIDNamespace) IDOfSession(s *Session) SessionID {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.sids[s]
}
// SessionWithID returns the Session with the given ID in the PID namespace ns,
// or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the session.
func (pidns *PIDNamespace) SessionWithID(id SessionID) *Session {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.sessions[id]
}
// ProcessGroup returns the ThreadGroup's ProcessGroup.
//
// A reference is not taken on the process group.
func (tg *ThreadGroup) ProcessGroup() *ProcessGroup {
tg.pidns.owner.mu.RLock()
defer tg.pidns.owner.mu.RUnlock()
return tg.processGroup
}
// IDOfProcessGroup returns the process group assigned to pg in PID namespace ns.
//
// The same constraints apply as IDOfSession.
func (pidns *PIDNamespace) IDOfProcessGroup(pg *ProcessGroup) ProcessGroupID {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.pgids[pg]
}
// ProcessGroupWithID returns the ProcessGroup with the given ID in the PID
// namespace ns, or nil if that given ID is not defined in this namespace.
//
// A reference is not taken on the process group.
func (pidns *PIDNamespace) ProcessGroupWithID(id ProcessGroupID) *ProcessGroup {
pidns.owner.mu.RLock()
defer pidns.owner.mu.RUnlock()
return pidns.processGroups[id]
}