gvisor/pkg/tcpip/header/ndp_options.go

661 lines
22 KiB
Go
Raw Normal View History

// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package header
import (
"encoding/binary"
"errors"
"fmt"
"math"
"time"
"gvisor.dev/gvisor/pkg/tcpip"
)
const (
// NDPSourceLinkLayerAddressOptionType is the type of the Source Link Layer
// Address option, as per RFC 4861 section 4.6.1.
NDPSourceLinkLayerAddressOptionType = 1
// NDPTargetLinkLayerAddressOptionType is the type of the Target Link Layer
// Address option, as per RFC 4861 section 4.6.1.
NDPTargetLinkLayerAddressOptionType = 2
// NDPLinkLayerAddressSize is the size of a Source or Target Link Layer
// Address option for an Ethernet address.
NDPLinkLayerAddressSize = 8
// NDPPrefixInformationType is the type of the Prefix Information
// option, as per RFC 4861 section 4.6.2.
NDPPrefixInformationType = 3
// ndpPrefixInformationLength is the expected length, in bytes, of the
// body of an NDP Prefix Information option, as per RFC 4861 section
// 4.6.2 which specifies that the Length field is 4. Given this, the
// expected length, in bytes, is 30 becuase 4 * lengthByteUnits (8) - 2
// (Type & Length) = 30.
ndpPrefixInformationLength = 30
// ndpPrefixInformationPrefixLengthOffset is the offset of the Prefix
// Length field within an NDPPrefixInformation.
ndpPrefixInformationPrefixLengthOffset = 0
// ndpPrefixInformationFlagsOffset is the offset of the flags byte
// within an NDPPrefixInformation.
ndpPrefixInformationFlagsOffset = 1
// ndpPrefixInformationOnLinkFlagMask is the mask of the On-Link Flag
// field in the flags byte within an NDPPrefixInformation.
ndpPrefixInformationOnLinkFlagMask = (1 << 7)
// ndpPrefixInformationAutoAddrConfFlagMask is the mask of the
// Autonomous Address-Configuration flag field in the flags byte within
// an NDPPrefixInformation.
ndpPrefixInformationAutoAddrConfFlagMask = (1 << 6)
// ndpPrefixInformationReserved1FlagsMask is the mask of the Reserved1
// field in the flags byte within an NDPPrefixInformation.
ndpPrefixInformationReserved1FlagsMask = 63
// ndpPrefixInformationValidLifetimeOffset is the start of the 4-byte
// Valid Lifetime field within an NDPPrefixInformation.
ndpPrefixInformationValidLifetimeOffset = 2
// ndpPrefixInformationPreferredLifetimeOffset is the start of the
// 4-byte Preferred Lifetime field within an NDPPrefixInformation.
ndpPrefixInformationPreferredLifetimeOffset = 6
// ndpPrefixInformationReserved2Offset is the start of the 4-byte
// Reserved2 field within an NDPPrefixInformation.
ndpPrefixInformationReserved2Offset = 10
// ndpPrefixInformationReserved2Length is the length of the Reserved2
// field.
//
// It is 4 bytes.
ndpPrefixInformationReserved2Length = 4
// ndpPrefixInformationPrefixOffset is the start of the Prefix field
// within an NDPPrefixInformation.
ndpPrefixInformationPrefixOffset = 14
// NDPRecursiveDNSServerOptionType is the type of the Recursive DNS
// Server option, as per RFC 8106 section 5.1.
NDPRecursiveDNSServerOptionType = 25
// ndpRecursiveDNSServerLifetimeOffset is the start of the 4-byte
// Lifetime field within an NDPRecursiveDNSServer.
ndpRecursiveDNSServerLifetimeOffset = 2
// ndpRecursiveDNSServerAddressesOffset is the start of the addresses
// for IPv6 Recursive DNS Servers within an NDPRecursiveDNSServer.
ndpRecursiveDNSServerAddressesOffset = 6
// minNDPRecursiveDNSServerLength is the minimum NDP Recursive DNS
// Server option's length field value when it contains at least one
// IPv6 address.
minNDPRecursiveDNSServerLength = 3
// lengthByteUnits is the multiplier factor for the Length field of an
// NDP option. That is, the length field for NDP options is in units of
// 8 octets, as per RFC 4861 section 4.6.
lengthByteUnits = 8
)
Discover on-link prefixes from Router Advertisements' Prefix Information options This change allows the netstack to do NDP's Prefix Discovery as outlined by RFC 4861 section 6.3.4. If configured to do so, when a new on-link prefix is discovered, the routing table will be updated with a device route through the nic the RA arrived at. Likewise, when such a prefix gets invalidated, the device route will be removed. Note, this change will not break existing uses of netstack as the default configuration for the stack options is set in such a way that Prefix Discovery will not be performed. See `stack.Options` and `stack.NDPConfigurations` for more details. This change reuses 1 option and introduces a new one that is required to take advantage of Prefix Discovery, all available under NDPConfigurations: - HandleRAs: Whether or not NDP RAs are processes - DiscoverOnLinkPrefixes: Whether or not Prefix Discovery is performed (new) Another note: for a NIC to process Prefix Information options (in Router Advertisements), it must not be a router itself. Currently the netstack does not have per-interface routing configuration; the routing/forwarding configuration is controlled stack-wide. Therefore, if the stack is configured to enable forwarding/routing, no router Advertisements (and by extension the Prefix Information options) will be processed. Tests: Unittest to make sure that Prefix Discovery and updates to the routing table only occur if explicitly configured to do so. Unittest to make sure at max stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are remembered. PiperOrigin-RevId: 280049278
2019-11-12 22:02:53 +00:00
var (
// NDPInfiniteLifetime is a value that represents infinity for the
// 4-byte lifetime fields found in various NDP options. Its value is
// (2^32 - 1)s = 4294967295s.
Discover on-link prefixes from Router Advertisements' Prefix Information options This change allows the netstack to do NDP's Prefix Discovery as outlined by RFC 4861 section 6.3.4. If configured to do so, when a new on-link prefix is discovered, the routing table will be updated with a device route through the nic the RA arrived at. Likewise, when such a prefix gets invalidated, the device route will be removed. Note, this change will not break existing uses of netstack as the default configuration for the stack options is set in such a way that Prefix Discovery will not be performed. See `stack.Options` and `stack.NDPConfigurations` for more details. This change reuses 1 option and introduces a new one that is required to take advantage of Prefix Discovery, all available under NDPConfigurations: - HandleRAs: Whether or not NDP RAs are processes - DiscoverOnLinkPrefixes: Whether or not Prefix Discovery is performed (new) Another note: for a NIC to process Prefix Information options (in Router Advertisements), it must not be a router itself. Currently the netstack does not have per-interface routing configuration; the routing/forwarding configuration is controlled stack-wide. Therefore, if the stack is configured to enable forwarding/routing, no router Advertisements (and by extension the Prefix Information options) will be processed. Tests: Unittest to make sure that Prefix Discovery and updates to the routing table only occur if explicitly configured to do so. Unittest to make sure at max stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are remembered. PiperOrigin-RevId: 280049278
2019-11-12 22:02:53 +00:00
//
// This is a variable instead of a constant so that tests can change
// this value to a smaller value. It should only be modified by tests.
NDPInfiniteLifetime = time.Second * math.MaxUint32
Discover on-link prefixes from Router Advertisements' Prefix Information options This change allows the netstack to do NDP's Prefix Discovery as outlined by RFC 4861 section 6.3.4. If configured to do so, when a new on-link prefix is discovered, the routing table will be updated with a device route through the nic the RA arrived at. Likewise, when such a prefix gets invalidated, the device route will be removed. Note, this change will not break existing uses of netstack as the default configuration for the stack options is set in such a way that Prefix Discovery will not be performed. See `stack.Options` and `stack.NDPConfigurations` for more details. This change reuses 1 option and introduces a new one that is required to take advantage of Prefix Discovery, all available under NDPConfigurations: - HandleRAs: Whether or not NDP RAs are processes - DiscoverOnLinkPrefixes: Whether or not Prefix Discovery is performed (new) Another note: for a NIC to process Prefix Information options (in Router Advertisements), it must not be a router itself. Currently the netstack does not have per-interface routing configuration; the routing/forwarding configuration is controlled stack-wide. Therefore, if the stack is configured to enable forwarding/routing, no router Advertisements (and by extension the Prefix Information options) will be processed. Tests: Unittest to make sure that Prefix Discovery and updates to the routing table only occur if explicitly configured to do so. Unittest to make sure at max stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are remembered. PiperOrigin-RevId: 280049278
2019-11-12 22:02:53 +00:00
)
// NDPOptionIterator is an iterator of NDPOption.
//
// Note, between when an NDPOptionIterator is obtained and last used, no changes
// to the NDPOptions may happen. Doing so may cause undefined and unexpected
// behaviour. It is fine to obtain an NDPOptionIterator, iterate over the first
// few NDPOption then modify the backing NDPOptions so long as the
// NDPOptionIterator obtained before modification is no longer used.
type NDPOptionIterator struct {
// The NDPOptions this NDPOptionIterator is iterating over.
opts NDPOptions
}
// Potential errors when iterating over an NDPOptions.
var (
ErrNDPOptBufExhausted = errors.New("Buffer unexpectedly exhausted")
ErrNDPOptZeroLength = errors.New("NDP option has zero-valued Length field")
ErrNDPOptMalformedBody = errors.New("NDP option has a malformed body")
ErrNDPInvalidLength = errors.New("NDP option's Length value is invalid as per relevant RFC")
)
// Next returns the next element in the backing NDPOptions, or true if we are
// done, or false if an error occured.
//
// The return can be read as option, done, error. Note, option should only be
// used if done is false and error is nil.
func (i *NDPOptionIterator) Next() (NDPOption, bool, error) {
for {
// Do we still have elements to look at?
if len(i.opts) == 0 {
return nil, true, nil
}
// Do we have enough bytes for an NDP option that has a Length
// field of at least 1? Note, 0 in the Length field is invalid.
if len(i.opts) < lengthByteUnits {
return nil, true, ErrNDPOptBufExhausted
}
// Get the Type field.
t := i.opts[0]
// Get the Length field.
l := i.opts[1]
// This would indicate an erroneous NDP option as the Length
// field should never be 0.
if l == 0 {
return nil, true, ErrNDPOptZeroLength
}
// How many bytes are in the option body?
numBytes := int(l) * lengthByteUnits
numBodyBytes := numBytes - 2
potentialBody := i.opts[2:]
// This would indicate an erroenous NDPOptions buffer as we ran
// out of the buffer in the middle of an NDP option.
if left := len(potentialBody); left < numBodyBytes {
return nil, true, ErrNDPOptBufExhausted
}
// Get only the options body, leaving the rest of the options
// buffer alone.
body := potentialBody[:numBodyBytes]
// Update opts with the remaining options body.
i.opts = i.opts[numBytes:]
switch t {
case NDPSourceLinkLayerAddressOptionType:
return NDPSourceLinkLayerAddressOption(body), false, nil
case NDPTargetLinkLayerAddressOptionType:
return NDPTargetLinkLayerAddressOption(body), false, nil
case NDPPrefixInformationType:
// Make sure the length of a Prefix Information option
// body is ndpPrefixInformationLength, as per RFC 4861
// section 4.6.2.
if numBodyBytes != ndpPrefixInformationLength {
return nil, true, ErrNDPOptMalformedBody
}
return NDPPrefixInformation(body), false, nil
case NDPRecursiveDNSServerOptionType:
// RFC 8106 section 5.3.1 outlines that the RDNSS option
// must have a minimum length of 3 so it contains at
// least one IPv6 address.
if l < minNDPRecursiveDNSServerLength {
return nil, true, ErrNDPInvalidLength
}
opt := NDPRecursiveDNSServer(body)
if len(opt.Addresses()) == 0 {
return nil, true, ErrNDPOptMalformedBody
}
return opt, false, nil
default:
// We do not yet recognize the option, just skip for
// now. This is okay because RFC 4861 allows us to
// skip/ignore any unrecognized options. However,
// we MUST recognized all the options in RFC 4861.
//
// TODO(b/141487990): Handle all NDP options as defined
// by RFC 4861.
}
}
}
// NDPOptions is a buffer of NDP options as defined by RFC 4861 section 4.6.
type NDPOptions []byte
// Iter returns an iterator of NDPOption.
//
// If check is true, Iter will do an integrity check on the options by iterating
// over it and returning an error if detected.
//
// See NDPOptionIterator for more information.
func (b NDPOptions) Iter(check bool) (NDPOptionIterator, error) {
it := NDPOptionIterator{opts: b}
if check {
for it2 := it; true; {
if _, done, err := it2.Next(); err != nil || done {
return it, err
}
}
}
return it, nil
}
// Serialize serializes the provided list of NDP options into o.
//
// Note, b must be of sufficient size to hold all the options in s. See
// NDPOptionsSerializer.Length for details on the getting the total size
// of a serialized NDPOptionsSerializer.
//
// Serialize may panic if b is not of sufficient size to hold all the options
// in s.
func (b NDPOptions) Serialize(s NDPOptionsSerializer) int {
done := 0
for _, o := range s {
l := paddedLength(o)
if l == 0 {
continue
}
b[0] = o.Type()
// We know this safe because paddedLength would have returned
// 0 if o had an invalid length (> 255 * lengthByteUnits).
b[1] = uint8(l / lengthByteUnits)
// Serialize NDP option body.
used := o.serializeInto(b[2:])
// Zero out remaining (padding) bytes, if any exists.
for i := used + 2; i < l; i++ {
b[i] = 0
}
b = b[l:]
done += l
}
return done
}
// NDPOption is the set of functions to be implemented by all NDP option types.
type NDPOption interface {
fmt.Stringer
// Type returns the type of the receiver.
Type() uint8
// Length returns the length of the body of the receiver, in bytes.
Length() int
// serializeInto serializes the receiver into the provided byte
// buffer.
//
// Note, the caller MUST provide a byte buffer with size of at least
// Length. Implementers of this function may assume that the byte buffer
// is of sufficient size. serializeInto MAY panic if the provided byte
// buffer is not of sufficient size.
//
// serializeInto will return the number of bytes that was used to
// serialize the receiver. Implementers must only use the number of
// bytes required to serialize the receiver. Callers MAY provide a
// larger buffer than required to serialize into.
serializeInto([]byte) int
}
// paddedLength returns the length of o, in bytes, with any padding bytes, if
// required.
func paddedLength(o NDPOption) int {
l := o.Length()
if l == 0 {
return 0
}
// Length excludes the 2 Type and Length bytes.
l += 2
// Add extra bytes if needed to make sure the option is
// lengthByteUnits-byte aligned. We do this by adding lengthByteUnits-1
// to l and then stripping off the last few LSBits from l. This will
// make sure that l is rounded up to the nearest unit of
// lengthByteUnits. This works since lengthByteUnits is a power of 2
// (= 8).
mask := lengthByteUnits - 1
l += mask
l &^= mask
if l/lengthByteUnits > 255 {
// Should never happen because an option can only have a max
// value of 255 for its Length field, so just return 0 so this
// option does not get serialized.
//
// Returning 0 here will make sure that this option does not get
// serialized when NDPOptions.Serialize is called with the
// NDPOptionsSerializer that holds this option, effectively
// skipping this option during serialization. Also note that
// a value of zero for the Length field in an NDP option is
// invalid so this is another sign to the caller that this NDP
// option is malformed, as per RFC 4861 section 4.6.
return 0
}
return l
}
// NDPOptionsSerializer is a serializer for NDP options.
type NDPOptionsSerializer []NDPOption
// Length returns the total number of bytes required to serialize.
func (b NDPOptionsSerializer) Length() int {
l := 0
for _, o := range b {
l += paddedLength(o)
}
return l
}
// NDPSourceLinkLayerAddressOption is the NDP Source Link Layer Option
// as defined by RFC 4861 section 4.6.1.
//
// It is the first X bytes following the NDP option's Type and Length field
// where X is the value in Length multiplied by lengthByteUnits - 2 bytes.
type NDPSourceLinkLayerAddressOption tcpip.LinkAddress
// Type implements NDPOption.Type.
func (o NDPSourceLinkLayerAddressOption) Type() uint8 {
return NDPSourceLinkLayerAddressOptionType
}
// Length implements NDPOption.Length.
func (o NDPSourceLinkLayerAddressOption) Length() int {
return len(o)
}
// serializeInto implements NDPOption.serializeInto.
func (o NDPSourceLinkLayerAddressOption) serializeInto(b []byte) int {
return copy(b, o)
}
// String implements fmt.Stringer.String.
func (o NDPSourceLinkLayerAddressOption) String() string {
return fmt.Sprintf("%T(%s)", o, tcpip.LinkAddress(o))
}
// EthernetAddress will return an ethernet (MAC) address if the
// NDPSourceLinkLayerAddressOption's body has at minimum EthernetAddressSize
// bytes. If the body has more than EthernetAddressSize bytes, only the first
// EthernetAddressSize bytes are returned as that is all that is needed for an
// Ethernet address.
func (o NDPSourceLinkLayerAddressOption) EthernetAddress() tcpip.LinkAddress {
if len(o) >= EthernetAddressSize {
return tcpip.LinkAddress(o[:EthernetAddressSize])
}
return tcpip.LinkAddress([]byte(nil))
}
// NDPTargetLinkLayerAddressOption is the NDP Target Link Layer Option
// as defined by RFC 4861 section 4.6.1.
//
// It is the first X bytes following the NDP option's Type and Length field
// where X is the value in Length multiplied by lengthByteUnits - 2 bytes.
type NDPTargetLinkLayerAddressOption tcpip.LinkAddress
// Type implements NDPOption.Type.
func (o NDPTargetLinkLayerAddressOption) Type() uint8 {
return NDPTargetLinkLayerAddressOptionType
}
// Length implements NDPOption.Length.
func (o NDPTargetLinkLayerAddressOption) Length() int {
return len(o)
}
// serializeInto implements NDPOption.serializeInto.
func (o NDPTargetLinkLayerAddressOption) serializeInto(b []byte) int {
return copy(b, o)
}
// String implements fmt.Stringer.String.
func (o NDPTargetLinkLayerAddressOption) String() string {
return fmt.Sprintf("%T(%s)", o, tcpip.LinkAddress(o))
}
// EthernetAddress will return an ethernet (MAC) address if the
// NDPTargetLinkLayerAddressOption's body has at minimum EthernetAddressSize
// bytes. If the body has more than EthernetAddressSize bytes, only the first
// EthernetAddressSize bytes are returned as that is all that is needed for an
// Ethernet address.
func (o NDPTargetLinkLayerAddressOption) EthernetAddress() tcpip.LinkAddress {
if len(o) >= EthernetAddressSize {
return tcpip.LinkAddress(o[:EthernetAddressSize])
}
return tcpip.LinkAddress([]byte(nil))
}
// NDPPrefixInformation is the NDP Prefix Information option as defined by
// RFC 4861 section 4.6.2.
//
// The length, in bytes, of a valid NDP Prefix Information option body MUST be
// ndpPrefixInformationLength bytes.
type NDPPrefixInformation []byte
// Type implements NDPOption.Type.
func (o NDPPrefixInformation) Type() uint8 {
return NDPPrefixInformationType
}
// Length implements NDPOption.Length.
func (o NDPPrefixInformation) Length() int {
return ndpPrefixInformationLength
}
// serializeInto implements NDPOption.serializeInto.
func (o NDPPrefixInformation) serializeInto(b []byte) int {
used := copy(b, o)
// Zero out the Reserved1 field.
b[ndpPrefixInformationFlagsOffset] &^= ndpPrefixInformationReserved1FlagsMask
// Zero out the Reserved2 field.
reserved2 := b[ndpPrefixInformationReserved2Offset:][:ndpPrefixInformationReserved2Length]
for i := range reserved2 {
reserved2[i] = 0
}
return used
}
// String implements fmt.Stringer.String.
func (o NDPPrefixInformation) String() string {
return fmt.Sprintf("%T(O=%t, A=%t, PL=%s, VL=%s, Prefix=%s)",
o,
o.OnLinkFlag(),
o.AutonomousAddressConfigurationFlag(),
o.PreferredLifetime(),
o.ValidLifetime(),
o.Subnet())
}
// PrefixLength returns the value in the number of leading bits in the Prefix
// that are valid.
//
// Valid values are in the range [0, 128], but o may not always contain valid
// values. It is up to the caller to valdiate the Prefix Information option.
func (o NDPPrefixInformation) PrefixLength() uint8 {
return o[ndpPrefixInformationPrefixLengthOffset]
}
// OnLinkFlag returns true of the prefix is considered on-link. On-link means
// that a forwarding node is not needed to send packets to other nodes on the
// same prefix.
//
// Note, when this function returns false, no statement is made about the
// on-link property of a prefix. That is, if OnLinkFlag returns false, the
// caller MUST NOT conclude that the prefix is off-link and MUST NOT update any
// previously stored state for this prefix about its on-link status.
func (o NDPPrefixInformation) OnLinkFlag() bool {
return o[ndpPrefixInformationFlagsOffset]&ndpPrefixInformationOnLinkFlagMask != 0
}
// AutonomousAddressConfigurationFlag returns true if the prefix can be used for
// Stateless Address Auto-Configuration (as specified in RFC 4862).
func (o NDPPrefixInformation) AutonomousAddressConfigurationFlag() bool {
return o[ndpPrefixInformationFlagsOffset]&ndpPrefixInformationAutoAddrConfFlagMask != 0
}
// ValidLifetime returns the length of time that the prefix is valid for the
// purpose of on-link determination. This value is relative to the send time of
// the packet that the Prefix Information option was present in.
//
// Note, a value of 0 implies the prefix should not be considered as on-link,
// and a value of infinity/forever is represented by
// NDPInfiniteLifetime.
func (o NDPPrefixInformation) ValidLifetime() time.Duration {
// The field is the time in seconds, as per RFC 4861 section 4.6.2.
return time.Second * time.Duration(binary.BigEndian.Uint32(o[ndpPrefixInformationValidLifetimeOffset:]))
}
// PreferredLifetime returns the length of time that an address generated from
// the prefix via Stateless Address Auto-Configuration remains preferred. This
// value is relative to the send time of the packet that the Prefix Information
// option was present in.
//
// Note, a value of 0 implies that addresses generated from the prefix should
// no longer remain preferred, and a value of infinity is represented by
// NDPInfiniteLifetime.
//
// Also note that the value of this field MUST NOT exceed the Valid Lifetime
// field to avoid preferring addresses that are no longer valid, for the
// purpose of Stateless Address Auto-Configuration.
func (o NDPPrefixInformation) PreferredLifetime() time.Duration {
// The field is the time in seconds, as per RFC 4861 section 4.6.2.
return time.Second * time.Duration(binary.BigEndian.Uint32(o[ndpPrefixInformationPreferredLifetimeOffset:]))
}
// Prefix returns an IPv6 address or a prefix of an IPv6 address. The Prefix
// Length field (see NDPPrefixInformation.PrefixLength) contains the number
// of valid leading bits in the prefix.
//
// Hosts SHOULD ignore an NDP Prefix Information option where the Prefix field
// holds the link-local prefix (fe80::).
func (o NDPPrefixInformation) Prefix() tcpip.Address {
return tcpip.Address(o[ndpPrefixInformationPrefixOffset:][:IPv6AddressSize])
}
Discover on-link prefixes from Router Advertisements' Prefix Information options This change allows the netstack to do NDP's Prefix Discovery as outlined by RFC 4861 section 6.3.4. If configured to do so, when a new on-link prefix is discovered, the routing table will be updated with a device route through the nic the RA arrived at. Likewise, when such a prefix gets invalidated, the device route will be removed. Note, this change will not break existing uses of netstack as the default configuration for the stack options is set in such a way that Prefix Discovery will not be performed. See `stack.Options` and `stack.NDPConfigurations` for more details. This change reuses 1 option and introduces a new one that is required to take advantage of Prefix Discovery, all available under NDPConfigurations: - HandleRAs: Whether or not NDP RAs are processes - DiscoverOnLinkPrefixes: Whether or not Prefix Discovery is performed (new) Another note: for a NIC to process Prefix Information options (in Router Advertisements), it must not be a router itself. Currently the netstack does not have per-interface routing configuration; the routing/forwarding configuration is controlled stack-wide. Therefore, if the stack is configured to enable forwarding/routing, no router Advertisements (and by extension the Prefix Information options) will be processed. Tests: Unittest to make sure that Prefix Discovery and updates to the routing table only occur if explicitly configured to do so. Unittest to make sure at max stack.MaxDiscoveredOnLinkPrefixes discovered on-link prefixes are remembered. PiperOrigin-RevId: 280049278
2019-11-12 22:02:53 +00:00
// Subnet returns the Prefix field and Prefix Length field represented in a
// tcpip.Subnet.
func (o NDPPrefixInformation) Subnet() tcpip.Subnet {
addrWithPrefix := tcpip.AddressWithPrefix{
Address: o.Prefix(),
PrefixLen: int(o.PrefixLength()),
}
return addrWithPrefix.Subnet()
}
// NDPRecursiveDNSServer is the NDP Recursive DNS Server option, as defined by
// RFC 8106 section 5.1.
//
// To make sure that the option meets its minimum length and does not end in the
// middle of a DNS server's IPv6 address, the length of a valid
// NDPRecursiveDNSServer must meet the following constraint:
// (Length - ndpRecursiveDNSServerAddressesOffset) % IPv6AddressSize == 0
type NDPRecursiveDNSServer []byte
// Type returns the type of an NDP Recursive DNS Server option.
//
// Type implements NDPOption.Type.
func (NDPRecursiveDNSServer) Type() uint8 {
return NDPRecursiveDNSServerOptionType
}
// Length implements NDPOption.Length.
func (o NDPRecursiveDNSServer) Length() int {
return len(o)
}
// serializeInto implements NDPOption.serializeInto.
func (o NDPRecursiveDNSServer) serializeInto(b []byte) int {
used := copy(b, o)
// Zero out the reserved bytes that are before the Lifetime field.
for i := 0; i < ndpRecursiveDNSServerLifetimeOffset; i++ {
b[i] = 0
}
return used
}
// String implements fmt.Stringer.String.
func (o NDPRecursiveDNSServer) String() string {
return fmt.Sprintf("%T(%s valid for %s)", o, o.Addresses(), o.Lifetime())
}
// Lifetime returns the length of time that the DNS server addresses
// in this option may be used for name resolution.
//
// Note, a value of 0 implies the addresses should no longer be used,
// and a value of infinity/forever is represented by NDPInfiniteLifetime.
//
// Lifetime may panic if o does not have enough bytes to hold the Lifetime
// field.
func (o NDPRecursiveDNSServer) Lifetime() time.Duration {
// The field is the time in seconds, as per RFC 8106 section 5.1.
return time.Second * time.Duration(binary.BigEndian.Uint32(o[ndpRecursiveDNSServerLifetimeOffset:]))
}
// Addresses returns the recursive DNS server IPv6 addresses that may be
// used for name resolution.
//
// Note, some of the addresses returned MAY be link-local addresses.
//
// Addresses may panic if o does not hold valid IPv6 addresses.
func (o NDPRecursiveDNSServer) Addresses() []tcpip.Address {
l := len(o)
if l < ndpRecursiveDNSServerAddressesOffset {
return nil
}
l -= ndpRecursiveDNSServerAddressesOffset
if l%IPv6AddressSize != 0 {
return nil
}
buf := o[ndpRecursiveDNSServerAddressesOffset:]
var addrs []tcpip.Address
for len(buf) > 0 {
addr := tcpip.Address(buf[:IPv6AddressSize])
if !IsV6UnicastAddress(addr) {
return nil
}
addrs = append(addrs, addr)
buf = buf[IPv6AddressSize:]
}
return addrs
}