gvisor/test/syscalls/linux/timerfd.cc

257 lines
9.1 KiB
C++
Raw Normal View History

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <poll.h>
#include <sys/timerfd.h>
#include <time.h>
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
// Wrapper around timerfd_create(2) that returns a FileDescriptor.
PosixErrorOr<FileDescriptor> TimerfdCreate(int clockid, int flags) {
int fd = timerfd_create(clockid, flags);
MaybeSave();
if (fd < 0) {
return PosixError(errno, "timerfd_create failed");
}
return FileDescriptor(fd);
}
// In tests that race a timerfd with a sleep, some slack is required because:
//
// - Timerfd expirations are asynchronous with respect to nanosleeps.
//
// - Because clock_gettime(CLOCK_MONOTONIC) is implemented through the VDSO,
// it technically uses a closely-related, but distinct, time domain from the
2019-07-16 21:03:40 +00:00
// CLOCK_MONOTONIC used to trigger timerfd expirations. The same applies to
// CLOCK_BOOTTIME which is an alias for CLOCK_MONOTONIC.
absl::Duration TimerSlack() { return absl::Milliseconds(500); }
2019-07-16 21:03:40 +00:00
class TimerfdTest : public ::testing::TestWithParam<int> {};
TEST_P(TimerfdTest, IsInitiallyStopped) {
auto const tfd = ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), 0));
struct itimerspec its = {};
ASSERT_THAT(timerfd_gettime(tfd.get(), &its), SyscallSucceeds());
EXPECT_EQ(0, its.it_value.tv_sec);
EXPECT_EQ(0, its.it_value.tv_nsec);
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, SingleShot) {
constexpr absl::Duration kDelay = absl::Seconds(1);
2019-07-16 21:03:40 +00:00
auto const tfd = ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), 0));
struct itimerspec its = {};
its.it_value = absl::ToTimespec(kDelay);
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
// The timer should fire exactly once since the interval is zero.
absl::SleepFor(kDelay + TimerSlack());
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
EXPECT_EQ(1, val);
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, Periodic) {
constexpr absl::Duration kDelay = absl::Seconds(1);
constexpr int kPeriods = 3;
2019-07-16 21:03:40 +00:00
auto const tfd = ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), 0));
struct itimerspec its = {};
its.it_value = absl::ToTimespec(kDelay);
its.it_interval = absl::ToTimespec(kDelay);
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
// Expect to see at least kPeriods expirations. More may occur due to the
// timer slack, or due to delays from scheduling or save/restore.
absl::SleepFor(kPeriods * kDelay + TimerSlack());
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
EXPECT_GE(val, kPeriods);
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, BlockingRead) {
constexpr absl::Duration kDelay = absl::Seconds(3);
2019-07-16 21:03:40 +00:00
auto const tfd = ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), 0));
struct itimerspec its = {};
its.it_value.tv_sec = absl::ToInt64Seconds(kDelay);
auto const start_time = absl::Now();
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
// read should block until the timer fires.
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
auto const end_time = absl::Now();
EXPECT_EQ(1, val);
EXPECT_GE((end_time - start_time) + TimerSlack(), kDelay);
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, NonblockingRead_NoRandomSave) {
constexpr absl::Duration kDelay = absl::Seconds(5);
auto const tfd =
2019-07-16 21:03:40 +00:00
ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), TFD_NONBLOCK));
// Since the timer is initially disabled and has never fired, read should
// return EAGAIN.
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallFailsWithErrno(EAGAIN));
DisableSave ds; // Timing-sensitive.
// Arm the timer.
struct itimerspec its = {};
its.it_value.tv_sec = absl::ToInt64Seconds(kDelay);
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
// Since the timer has not yet fired, read should return EAGAIN.
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallFailsWithErrno(EAGAIN));
ds.reset(); // No longer timing-sensitive.
// After the timer fires, read should indicate 1 expiration.
absl::SleepFor(kDelay + TimerSlack());
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
EXPECT_EQ(1, val);
// The successful read should have reset the number of expirations.
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallFailsWithErrno(EAGAIN));
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, BlockingPoll_SetTimeResetsExpirations) {
constexpr absl::Duration kDelay = absl::Seconds(3);
auto const tfd =
2019-07-16 21:03:40 +00:00
ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), TFD_NONBLOCK));
struct itimerspec its = {};
its.it_value.tv_sec = absl::ToInt64Seconds(kDelay);
auto const start_time = absl::Now();
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
// poll should block until the timer fires.
struct pollfd pfd = {};
pfd.fd = tfd.get();
pfd.events = POLLIN;
ASSERT_THAT(poll(&pfd, /* nfds = */ 1,
/* timeout = */ 2 * absl::ToInt64Seconds(kDelay) * 1000),
SyscallSucceedsWithValue(1));
auto const end_time = absl::Now();
EXPECT_EQ(POLLIN, pfd.revents);
EXPECT_GE((end_time - start_time) + TimerSlack(), kDelay);
// Call timerfd_settime again with a value of 0. This should reset the number
// of expirations to 0, causing read to return EAGAIN since the timerfd is
// non-blocking.
its.it_value.tv_sec = 0;
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallFailsWithErrno(EAGAIN));
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, SetAbsoluteTime) {
constexpr absl::Duration kDelay = absl::Seconds(3);
// Use a non-blocking timerfd so that if TFD_TIMER_ABSTIME is incorrectly
// non-functional, we get EAGAIN rather than a test timeout.
auto const tfd =
2019-07-16 21:03:40 +00:00
ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), TFD_NONBLOCK));
struct itimerspec its = {};
2019-07-16 21:03:40 +00:00
ASSERT_THAT(clock_gettime(GetParam(), &its.it_value), SyscallSucceeds());
its.it_value.tv_sec += absl::ToInt64Seconds(kDelay);
ASSERT_THAT(timerfd_settime(tfd.get(), TFD_TIMER_ABSTIME, &its, nullptr),
SyscallSucceeds());
absl::SleepFor(kDelay + TimerSlack());
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
EXPECT_EQ(1, val);
}
2019-07-16 21:03:40 +00:00
TEST_P(TimerfdTest, IllegalReadWrite) {
auto const tfd =
ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(GetParam(), TFD_NONBLOCK));
uint64_t val = 0;
EXPECT_THAT(PreadFd(tfd.get(), &val, sizeof(val), 0),
SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(WriteFd(tfd.get(), &val, sizeof(val)),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(PwriteFd(tfd.get(), &val, sizeof(val), 0),
SyscallFailsWithErrno(ESPIPE));
}
std::string PrintClockId(::testing::TestParamInfo<int> info) {
switch (info.param) {
case CLOCK_MONOTONIC:
return "CLOCK_MONOTONIC";
case CLOCK_BOOTTIME:
return "CLOCK_BOOTTIME";
default:
return absl::StrCat(info.param);
}
}
INSTANTIATE_TEST_SUITE_P(AllTimerTypes, TimerfdTest,
2019-07-16 21:03:40 +00:00
::testing::Values(CLOCK_MONOTONIC, CLOCK_BOOTTIME),
PrintClockId);
TEST(TimerfdClockRealtimeTest, ClockRealtime) {
// Since CLOCK_REALTIME can, by definition, change, we can't make any
// non-flaky assertions about the amount of time it takes for a
// CLOCK_REALTIME-based timer to expire. Just check that it expires at all,
// and hope it happens before the test times out.
constexpr int kDelaySecs = 1;
auto const tfd = ASSERT_NO_ERRNO_AND_VALUE(TimerfdCreate(CLOCK_REALTIME, 0));
struct itimerspec its = {};
its.it_value.tv_sec = kDelaySecs;
ASSERT_THAT(timerfd_settime(tfd.get(), /* flags = */ 0, &its, nullptr),
SyscallSucceeds());
uint64_t val = 0;
ASSERT_THAT(ReadFd(tfd.get(), &val, sizeof(uint64_t)),
SyscallSucceedsWithValue(sizeof(uint64_t)));
EXPECT_EQ(1, val);
}
} // namespace
} // namespace testing
} // namespace gvisor