gvisor/pkg/fspath/builder.go

105 lines
2.6 KiB
Go
Raw Normal View History

Sentry virtual filesystem, v2 Major differences from the current ("v1") sentry VFS: - Path resolution is Filesystem-driven (FilesystemImpl methods call vfs.ResolvingPath methods) rather than VFS-driven (fs package owns a Dirent tree and calls fs.InodeOperations methods to populate it). This drastically improves performance, primarily by reducing overhead from inefficient synchronization and indirection. It also makes it possible to implement remote filesystem protocols that translate FS system calls into single RPCs, rather than having to make (at least) one RPC per path component, significantly reducing the latency of remote filesystems (especially during cold starts and for uncacheable shared filesystems). - Mounts are correctly represented as a separate check based on contextual state (current mount) rather than direct replacement in a fs.Dirent tree. This makes it possible to support (non-recursive) bind mounts and mount namespaces. Included in this CL is fsimpl/memfs, an incomplete in-memory filesystem that exists primarily to demonstrate intended filesystem implementation patterns and for benchmarking: BenchmarkVFS1TmpfsStat/1-6 3000000 497 ns/op BenchmarkVFS1TmpfsStat/2-6 2000000 676 ns/op BenchmarkVFS1TmpfsStat/3-6 2000000 904 ns/op BenchmarkVFS1TmpfsStat/8-6 1000000 1944 ns/op BenchmarkVFS1TmpfsStat/64-6 100000 14067 ns/op BenchmarkVFS1TmpfsStat/100-6 50000 21700 ns/op BenchmarkVFS2MemfsStat/1-6 10000000 197 ns/op BenchmarkVFS2MemfsStat/2-6 5000000 233 ns/op BenchmarkVFS2MemfsStat/3-6 5000000 268 ns/op BenchmarkVFS2MemfsStat/8-6 3000000 477 ns/op BenchmarkVFS2MemfsStat/64-6 500000 2592 ns/op BenchmarkVFS2MemfsStat/100-6 300000 4045 ns/op BenchmarkVFS1TmpfsMountStat/1-6 2000000 679 ns/op BenchmarkVFS1TmpfsMountStat/2-6 2000000 912 ns/op BenchmarkVFS1TmpfsMountStat/3-6 1000000 1113 ns/op BenchmarkVFS1TmpfsMountStat/8-6 1000000 2118 ns/op BenchmarkVFS1TmpfsMountStat/64-6 100000 14251 ns/op BenchmarkVFS1TmpfsMountStat/100-6 100000 22397 ns/op BenchmarkVFS2MemfsMountStat/1-6 5000000 317 ns/op BenchmarkVFS2MemfsMountStat/2-6 5000000 361 ns/op BenchmarkVFS2MemfsMountStat/3-6 5000000 387 ns/op BenchmarkVFS2MemfsMountStat/8-6 3000000 582 ns/op BenchmarkVFS2MemfsMountStat/64-6 500000 2699 ns/op BenchmarkVFS2MemfsMountStat/100-6 300000 4133 ns/op From this we can infer that, on this machine: - Constant cost for tmpfs stat() is ~160ns in VFS2 and ~280ns in VFS1. - Per-path-component cost is ~35ns in VFS2 and ~215ns in VFS1, a difference of about 6x. - The cost of crossing a mount boundary is about 80ns in VFS2 (MemfsMountStat/1 does approximately the same amount of work as MemfsStat/2, except that it also crosses a mount boundary). This is an inescapable cost of the separate mount lookup needed to support bind mounts and mount namespaces. PiperOrigin-RevId: 258853946
2019-07-18 22:09:14 +00:00
// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fspath
import (
"fmt"
)
// Builder is similar to strings.Builder, but is used to produce pathnames
// given path components in reverse order (from leaf to root). This is useful
// in the common case where a filesystem is represented by a tree of named
// nodes, and the path to a given node must be produced by walking upward from
// that node to a given root.
type Builder struct {
buf []byte
start int
needSep bool
}
// Reset resets the Builder to be empty.
func (b *Builder) Reset() {
b.start = len(b.buf)
b.needSep = false
}
// Len returns the number of accumulated bytes.
func (b *Builder) Len() int {
return len(b.buf) - b.start
}
func (b *Builder) needToGrow(n int) bool {
return b.start < n
}
func (b *Builder) grow(n int) {
newLen := b.Len() + n
var newCap int
if len(b.buf) == 0 {
newCap = 64 // arbitrary
} else {
newCap = 2 * len(b.buf)
}
for newCap < newLen {
newCap *= 2
if newCap == 0 {
panic(fmt.Sprintf("required length (%d) causes buffer size to overflow", newLen))
}
}
newBuf := make([]byte, newCap)
copy(newBuf[newCap-b.Len():], b.buf[b.start:])
b.start += newCap - len(b.buf)
b.buf = newBuf
}
// PrependComponent prepends the given path component to b's buffer. A path
// separator is automatically inserted if appropriate.
func (b *Builder) PrependComponent(pc string) {
if b.needSep {
b.PrependByte('/')
}
b.PrependString(pc)
b.needSep = true
}
// PrependString prepends the given string to b's buffer.
func (b *Builder) PrependString(str string) {
if b.needToGrow(len(str)) {
b.grow(len(str))
}
b.start -= len(str)
copy(b.buf[b.start:], str)
}
// PrependByte prepends the given byte to b's buffer.
func (b *Builder) PrependByte(c byte) {
if b.needToGrow(1) {
b.grow(1)
}
b.start--
b.buf[b.start] = c
}
// AppendString appends the given string to b's buffer.
func (b *Builder) AppendString(str string) {
if b.needToGrow(len(str)) {
b.grow(len(str))
}
oldStart := b.start
b.start -= len(str)
copy(b.buf[b.start:], b.buf[oldStart:])
copy(b.buf[len(b.buf)-len(str):], str)
}