gvisor/tools/checkescape/checkescape.go

919 lines
26 KiB
Go
Raw Normal View History

// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package checkescape allows recursive escape analysis for hot paths.
//
// The analysis tracks multiple types of escapes, in two categories. First,
// 'hard' escapes are explicit allocations. Second, 'soft' escapes are
// interface dispatches or dynamic function dispatches; these don't necessarily
// escape but they *may* escape. The analysis is capable of making assertions
// recursively: soft escapes cannot be analyzed in this way, and therefore
// count as escapes for recursive purposes.
//
// The different types of escapes are as follows, with the category in
// parentheses:
//
// heap: A direct allocation is made on the heap (hard).
// builtin: A call is made to a built-in allocation function (hard).
// stack: A stack split as part of a function preamble (soft).
// interface: A call is made via an interface whicy *may* escape (soft).
// dynamic: A dynamic function is dispatched which *may* escape (soft).
//
// To the use the package, annotate a function-level comment with either the
// line "// +checkescape" or "// +checkescape:OPTION[,OPTION]". In the second
// case, the OPTION field is either a type above, or one of:
//
// local: Escape analysis is limited to local hard escapes only.
// all: All the escapes are included.
// hard: All hard escapes are included.
//
// If the "// +checkescape" annotation is provided, this is equivalent to
// provided the local and hard options.
//
// Some examples of this syntax are:
//
// +checkescape:all - Analyzes for all escapes in this function and all calls.
// +checkescape:local - Analyzes only for default local hard escapes.
// +checkescape:heap - Only analyzes for heap escapes.
// +checkescape:interface,dynamic - Only checks for dynamic calls and interface calls.
// +checkescape - Does the same as +checkescape:local,hard.
//
// Note that all of the above can be inverted by using +mustescape. The
// +checkescape keyword will ensure failure if the class of escape occurs,
// whereas +mustescape will fail if the given class of escape does not occur.
//
// Local exemptions can be made by a comment of the form "// escapes: reason."
// This must appear on the line of the escape and will also apply to callers of
// the function as well (for non-local escape analysis).
package checkescape
import (
"bufio"
"bytes"
"flag"
"fmt"
"go/ast"
"go/token"
"go/types"
"io"
"log"
"os"
"os/exec"
"path/filepath"
"strings"
"golang.org/x/tools/go/analysis"
"golang.org/x/tools/go/analysis/passes/buildssa"
"golang.org/x/tools/go/ssa"
)
const (
// magic is the magic annotation.
magic = "// +checkescape"
// magicParams is the magic annotation with specific parameters.
magicParams = magic + ":"
// testMagic is the test magic annotation (parameters required).
testMagic = "// +mustescape:"
// exempt is the exemption annotation.
Support for saving pointers to fields in the state package. Previously, it was not possible to encode/decode an object graph which contained a pointer to a field within another type. This was because the encoder was previously unable to disambiguate a pointer to an object and a pointer within the object. This CL remedies this by constructing an address map tracking the full memory range object occupy. The encoded Refvalue message has been extended to allow references to children objects within another object. Because the encoding process may learn about object structure over time, we cannot encode any objects under the entire graph has been generated. This CL also updates the state package to use standard interfaces intead of reflection-based dispatch in order to improve performance overall. This includes a custom wire protocol to significantly reduce the number of allocations and take advantage of structure packing. As part of these changes, there are a small number of minor changes in other places of the code base: * The lists used during encoding are changed to use intrusive lists with the objectEncodeState directly, which required that the ilist Len() method is updated to work properly with the ElementMapper mechanism. * A bug is fixed in the list code wherein Remove() called on an element that is already removed can corrupt the list (removing the element if there's only a single element). Now the behavior is correct. * Standard error wrapping is introduced. * Compressio was updated to implement the new wire.Reader and wire.Writer inteface methods directly. The lack of a ReadByte and WriteByte caused issues not due to interface dispatch, but because underlying slices for a Read or Write call through an interface would always escape to the heap! * Statify has been updated to support the new APIs. See README.md for a description of how the new mechanism works. PiperOrigin-RevId: 318010298
2020-06-24 06:32:23 +00:00
exempt = "// escapes"
)
var (
// Binary is the binary under analysis.
//
// See Reader, below.
binary = flag.String("binary", "", "binary under analysis")
// Reader is the input stream.
//
// This may be set instead of Binary.
Reader io.Reader
// objdumpTool is the tool used to dump a binary.
objdumpTool = flag.String("objdump_tool", "", "tool used to dump a binary")
)
// EscapeReason is an escape reason.
//
// This is a simple enum.
type EscapeReason int
const (
allocation EscapeReason = iota
builtin
interfaceInvoke
dynamicCall
stackSplit
unknownPackage
reasonCount // Count for below.
)
// String returns the string for the EscapeReason.
//
// Note that this also implicitly defines the reverse string -> EscapeReason
// mapping, which is the word before the colon (computed below).
func (e EscapeReason) String() string {
switch e {
case interfaceInvoke:
return "interface: call to potentially allocating function"
case unknownPackage:
return "unknown: no package information available"
case allocation:
return "heap: explicit allocation"
case builtin:
return "builtin: call to potentially allocating builtin"
case dynamicCall:
return "dynamic: call to potentially allocating function"
case stackSplit:
return "stack: possible split on function entry"
default:
panic(fmt.Sprintf("unknown reason: %d", e))
}
}
var hardReasons = []EscapeReason{
allocation,
builtin,
}
var softReasons = []EscapeReason{
interfaceInvoke,
unknownPackage,
dynamicCall,
stackSplit,
}
var allReasons = append(hardReasons, softReasons...)
var escapeTypes = func() map[string]EscapeReason {
result := make(map[string]EscapeReason)
for _, r := range allReasons {
parts := strings.Split(r.String(), ":")
result[parts[0]] = r // Key before ':'.
}
return result
}()
// escapingBuiltins are builtins known to escape.
//
// These are lowered at an earlier stage of compilation to explicit function
// calls, but are not available for recursive analysis.
var escapingBuiltins = []string{
"append",
"makemap",
"newobject",
"mallocgc",
}
// packageEscapeFacts is the set of all functions in a package, and whether or
// not they recursively pass escape analysis.
//
// All the type names for receivers are encoded in the full key. The key
// represents the fully qualified package and type name used at link time.
//
// Note that each Escapes object is a summary. Local findings may be reported
// using more detailed information.
type packageEscapeFacts struct {
Funcs map[string]Escapes
}
// AFact implements analysis.Fact.AFact.
func (*packageEscapeFacts) AFact() {}
// Analyzer includes specific results.
var Analyzer = &analysis.Analyzer{
Name: "checkescape",
Doc: "escape analysis checks based on +checkescape annotations",
Run: runSelectEscapes,
Requires: []*analysis.Analyzer{buildssa.Analyzer},
FactTypes: []analysis.Fact{(*packageEscapeFacts)(nil)},
}
// EscapeAnalyzer includes all local escape results.
var EscapeAnalyzer = &analysis.Analyzer{
Name: "checkescape",
Doc: "complete local escape analysis results (requires Analyzer facts)",
Run: runAllEscapes,
Requires: []*analysis.Analyzer{buildssa.Analyzer},
}
// LinePosition is a low-resolution token.Position.
//
// This is used to match against possible exemptions placed in the source.
type LinePosition struct {
Filename string
Line int
}
// String implements fmt.Stringer.String.
func (e LinePosition) String() string {
return fmt.Sprintf("%s:%d", e.Filename, e.Line)
}
// Simplified returns the simplified name.
func (e LinePosition) Simplified() string {
return fmt.Sprintf("%s:%d", filepath.Base(e.Filename), e.Line)
}
// CallSite is a single call site.
//
// These can be chained.
type CallSite struct {
LocalPos token.Pos
Resolved LinePosition
}
// IsValid indicates whether the CallSite is valid or not.
func (cs *CallSite) IsValid() bool {
return cs.LocalPos.IsValid()
}
// Escapes is a collection of escapes.
//
// We record at most one escape for each reason, but record the number of
// escapes that were omitted.
//
// This object should be used to summarize all escapes for a single line (local
// analysis) or a single function (package facts).
//
// All fields are exported for gob.
type Escapes struct {
CallSites [reasonCount][]CallSite
Details [reasonCount]string
Omitted [reasonCount]int
}
// add is called by Add and Merge.
func (es *Escapes) add(r EscapeReason, detail string, omitted int, callSites ...CallSite) {
if es.CallSites[r] != nil {
// We will either be replacing the current escape or dropping
// the added one. Either way, we increment omitted by the
// appropriate amount.
es.Omitted[r]++
// If the callSites in the other is only a single element, then
// we will universally favor this. This provides the cleanest
// set of escapes to summarize, and more importantly: if there
if len(es.CallSites) == 1 || len(callSites) != 1 {
return
}
}
es.Details[r] = detail
es.CallSites[r] = callSites
es.Omitted[r] += omitted
}
// Add adds a single escape.
func (es *Escapes) Add(r EscapeReason, detail string, callSites ...CallSite) {
es.add(r, detail, 0, callSites...)
}
// IsEmpty returns true iff this Escapes is empty.
func (es *Escapes) IsEmpty() bool {
for _, cs := range es.CallSites {
if cs != nil {
return false
}
}
return true
}
// Filter filters out all escapes except those matches the given reasons.
//
// If local is set, then non-local escapes will also be filtered.
func (es *Escapes) Filter(reasons []EscapeReason, local bool) {
FilterReasons:
for r := EscapeReason(0); r < reasonCount; r++ {
for i := 0; i < len(reasons); i++ {
if r == reasons[i] {
continue FilterReasons
}
}
// Zap this reason.
es.CallSites[r] = nil
es.Details[r] = ""
es.Omitted[r] = 0
}
if !local {
return
}
for r := EscapeReason(0); r < reasonCount; r++ {
// Is does meet our local requirement?
if len(es.CallSites[r]) > 1 {
es.CallSites[r] = nil
es.Details[r] = ""
es.Omitted[r] = 0
}
}
}
// MergeWithCall merges these escapes with another.
//
// If callSite is nil, no call is added.
func (es *Escapes) MergeWithCall(other Escapes, callSite CallSite) {
for r := EscapeReason(0); r < reasonCount; r++ {
if other.CallSites[r] != nil {
// Construct our new call chain.
newCallSites := other.CallSites[r]
if callSite.IsValid() {
newCallSites = append([]CallSite{callSite}, newCallSites...)
}
// Add (potentially replacing) the underlying escape.
es.add(r, other.Details[r], other.Omitted[r], newCallSites...)
}
}
}
// Reportf will call Reportf for each class of escapes.
func (es *Escapes) Reportf(pass *analysis.Pass) {
var b bytes.Buffer // Reused for all escapes.
for r := EscapeReason(0); r < reasonCount; r++ {
if es.CallSites[r] == nil {
continue
}
b.Reset()
fmt.Fprintf(&b, "%s ", r.String())
if es.Omitted[r] > 0 {
fmt.Fprintf(&b, "(%d omitted) ", es.Omitted[r])
}
for _, cs := range es.CallSites[r][1:] {
fmt.Fprintf(&b, "→ %s ", cs.Resolved.String())
}
fmt.Fprintf(&b, "→ %s", es.Details[r])
pass.Reportf(es.CallSites[r][0].LocalPos, b.String())
}
}
// MergeAll merges a sequence of escapes.
func MergeAll(others []Escapes) (es Escapes) {
for _, other := range others {
es.MergeWithCall(other, CallSite{})
}
return
}
// loadObjdump reads the objdump output.
//
// This records if there is a call any function for every source line. It is
// used only to remove false positives for escape analysis. The call will be
// elided if escape analysis is able to put the object on the heap exclusively.
//
// Note that the map uses <basename.go>:<line> because that is all that is
// provided in the objdump format. Since this is all local, it is sufficient.
func loadObjdump() (map[string][]string, error) {
var (
args []string
stdin io.Reader
)
if *binary != "" {
args = append(args, *binary)
} else if Reader != nil {
stdin = Reader
} else {
// We have no input stream or binary.
return nil, fmt.Errorf("no binary or reader provided")
}
// Construct our command.
cmd := exec.Command(*objdumpTool, args...)
cmd.Stdin = stdin
cmd.Stderr = os.Stderr
out, err := cmd.StdoutPipe()
if err != nil {
return nil, err
}
if err := cmd.Start(); err != nil {
return nil, err
}
// Identify calls by address or name. Note that this is also
// constructed dynamically below, as we encounted the addresses.
// This is because some of the functions (duffzero) may have
// jump targets in the middle of the function itself.
funcsAllowed := map[string]struct{}{
"runtime.duffzero": struct{}{},
"runtime.duffcopy": struct{}{},
"runtime.racefuncenter": struct{}{},
"runtime.gcWriteBarrier": struct{}{},
"runtime.retpolineAX": struct{}{},
"runtime.retpolineBP": struct{}{},
"runtime.retpolineBX": struct{}{},
"runtime.retpolineCX": struct{}{},
"runtime.retpolineDI": struct{}{},
"runtime.retpolineDX": struct{}{},
"runtime.retpolineR10": struct{}{},
"runtime.retpolineR11": struct{}{},
"runtime.retpolineR12": struct{}{},
"runtime.retpolineR13": struct{}{},
"runtime.retpolineR14": struct{}{},
"runtime.retpolineR15": struct{}{},
"runtime.retpolineR8": struct{}{},
"runtime.retpolineR9": struct{}{},
"runtime.retpolineSI": struct{}{},
"runtime.stackcheck": struct{}{},
"runtime.settls": struct{}{},
}
addrsAllowed := make(map[string]struct{})
// Build the map.
nextFunc := "" // For funcsAllowed.
m := make(map[string][]string)
r := bufio.NewReader(out)
NextLine:
for {
line, err := r.ReadString('\n')
if err != nil && err != io.EOF {
return nil, err
}
fields := strings.Fields(line)
// Is this an "allowed" function definition?
if len(fields) >= 2 && fields[0] == "TEXT" {
nextFunc = strings.TrimSuffix(fields[1], "(SB)")
if _, ok := funcsAllowed[nextFunc]; !ok {
nextFunc = "" // Don't record addresses.
}
}
if nextFunc != "" && len(fields) > 2 {
// Save the given address (in hex form, as it appears).
addrsAllowed[fields[1]] = struct{}{}
}
// We recognize lines corresponding to actual code (not the
// symbol name or other metadata) and annotate them if they
// correspond to an explicit CALL instruction. We assume that
// the lack of a CALL for a given line is evidence that escape
// analysis has eliminated an allocation.
//
// Lines look like this (including the first space):
// gohacks_unsafe.go:33 0xa39 488b442408 MOVQ 0x8(SP), AX
if len(fields) >= 5 && line[0] == ' ' {
if !strings.Contains(fields[3], "CALL") {
continue
}
site := fields[0]
target := strings.TrimSuffix(fields[4], "(SB)")
// Ignore strings containing allowed functions.
if _, ok := funcsAllowed[target]; ok {
continue
}
if _, ok := addrsAllowed[target]; ok {
continue
}
if len(fields) > 5 {
// This may be a future relocation. Some
// objdump versions describe this differently.
// If it contains any of the functions allowed
// above as a string, we let it go.
softTarget := strings.Join(fields[5:], " ")
for name := range funcsAllowed {
if strings.Contains(softTarget, name) {
continue NextLine
}
}
}
// Does this exist already?
existing, ok := m[site]
if !ok {
existing = make([]string, 0, 1)
}
for _, other := range existing {
if target == other {
continue NextLine
}
}
existing = append(existing, target)
m[site] = existing // Update.
}
if err == io.EOF {
break
}
}
// Zap any accidental false positives.
final := make(map[string][]string)
for site, calls := range m {
filteredCalls := make([]string, 0, len(calls))
for _, call := range calls {
if _, ok := addrsAllowed[call]; ok {
continue // Omit this call.
}
filteredCalls = append(filteredCalls, call)
}
final[site] = filteredCalls
}
// Wait for the dump to finish.
if err := cmd.Wait(); err != nil {
return nil, err
}
return final, nil
}
// poser is a type that implements Pos.
type poser interface {
Pos() token.Pos
}
// runSelectEscapes runs with only select escapes.
func runSelectEscapes(pass *analysis.Pass) (interface{}, error) {
return run(pass, false)
}
// runAllEscapes runs with all escapes included.
func runAllEscapes(pass *analysis.Pass) (interface{}, error) {
return run(pass, true)
}
// findReasons extracts reasons from the function.
func findReasons(pass *analysis.Pass, fdecl *ast.FuncDecl) ([]EscapeReason, bool, map[EscapeReason]bool) {
// Is there a comment?
if fdecl.Doc == nil {
return nil, false, nil
}
var (
reasons []EscapeReason
local bool
testReasons = make(map[EscapeReason]bool) // reason -> local?
)
// Scan all lines.
found := false
for _, c := range fdecl.Doc.List {
// Does the comment contain a +checkescape line?
if !strings.HasPrefix(c.Text, magic) && !strings.HasPrefix(c.Text, testMagic) {
continue
}
if c.Text == magic {
// Default: hard reasons, local only.
reasons = hardReasons
local = true
} else if strings.HasPrefix(c.Text, magicParams) {
// Extract specific reasons.
types := strings.Split(c.Text[len(magicParams):], ",")
found = true // For below.
for i := 0; i < len(types); i++ {
if types[i] == "local" {
// Limit search to local escapes.
local = true
} else if types[i] == "all" {
// Append all reasons.
reasons = append(reasons, allReasons...)
} else if types[i] == "hard" {
// Append all hard reasons.
reasons = append(reasons, hardReasons...)
} else {
r, ok := escapeTypes[types[i]]
if !ok {
// This is not a valid escape reason.
pass.Reportf(fdecl.Pos(), "unknown reason: %v", types[i])
continue
}
reasons = append(reasons, r)
}
}
} else if strings.HasPrefix(c.Text, testMagic) {
types := strings.Split(c.Text[len(testMagic):], ",")
local := false
for i := 0; i < len(types); i++ {
if types[i] == "local" {
local = true
} else {
r, ok := escapeTypes[types[i]]
if !ok {
// This is not a valid escape reason.
pass.Reportf(fdecl.Pos(), "unknown reason: %v", types[i])
continue
}
if v, ok := testReasons[r]; ok && v {
// Already registered as local.
continue
}
testReasons[r] = local
}
}
}
}
if len(reasons) == 0 && found {
// A magic annotation was provided, but no reasons.
pass.Reportf(fdecl.Pos(), "no reasons provided")
}
return reasons, local, testReasons
}
// run performs the analysis.
func run(pass *analysis.Pass, localEscapes bool) (interface{}, error) {
calls, err := loadObjdump()
if err != nil {
// Note that if this analysis fails, then we don't actually
// fail the analyzer itself. We simply report every possible
// escape. In most cases this will work just fine.
log.Printf("WARNING: unable to load objdump: %v", err)
}
allEscapes := make(map[string][]Escapes)
mergedEscapes := make(map[string]Escapes)
linePosition := func(inst, parent poser) LinePosition {
p := pass.Fset.Position(inst.Pos())
if (p.Filename == "" || p.Line == 0) && parent != nil {
p = pass.Fset.Position(parent.Pos())
}
return LinePosition{
Filename: p.Filename,
Line: p.Line,
}
}
callSite := func(inst ssa.Instruction) CallSite {
return CallSite{
LocalPos: inst.Pos(),
Resolved: linePosition(inst, inst.Parent()),
}
}
hasCall := func(inst poser) (string, bool) {
p := linePosition(inst, nil)
if calls == nil {
// See above: we don't have access to the binary
// itself, so need to include every possible call.
return "(possible)", true
}
s, ok := calls[p.Simplified()]
if !ok {
return "", false
}
// Join all calls together.
return strings.Join(s, " or "), true
}
state := pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA)
// Build the exception list.
exemptions := make(map[LinePosition]string)
for _, f := range pass.Files {
for _, cg := range f.Comments {
for _, c := range cg.List {
p := pass.Fset.Position(c.Slash)
if strings.HasPrefix(strings.ToLower(c.Text), exempt) {
exemptions[LinePosition{
Filename: p.Filename,
Line: p.Line,
}] = c.Text[len(exempt):]
}
}
}
}
var loadFunc func(*ssa.Function) Escapes // Used below.
analyzeInstruction := func(inst ssa.Instruction) (es Escapes) {
cs := callSite(inst)
if _, ok := exemptions[cs.Resolved]; ok {
return // No escape.
}
switch x := inst.(type) {
case *ssa.Call:
if x.Call.IsInvoke() {
// This is an interface dispatch. There is no
// way to know if this is actually escaping or
// not, since we don't know the underlying
// type.
call, _ := hasCall(inst)
es.Add(interfaceInvoke, call, cs)
return
}
switch x := x.Call.Value.(type) {
case *ssa.Function:
if x.Pkg == nil {
// Can't resolve the package.
es.Add(unknownPackage, "no package", cs)
return
}
// Is this a local function? If yes, call the
// function to load the local function. The
// local escapes are the escapes found in the
// local function.
if x.Pkg.Pkg == pass.Pkg {
es.MergeWithCall(loadFunc(x), cs)
return
}
// Recursively collect information from
// the other analyzers.
var imp packageEscapeFacts
if !pass.ImportPackageFact(x.Pkg.Pkg, &imp) {
// Unable to import the dependency; we must
// declare these as escaping.
es.Add(unknownPackage, "no analysis", cs)
return
}
// The escapes of this instruction are the
// escapes of the called function directly.
// Note that this may record many escapes.
es.MergeWithCall(imp.Funcs[x.RelString(x.Pkg.Pkg)], cs)
return
case *ssa.Builtin:
// Ignore elided escapes.
if _, has := hasCall(inst); !has {
return
}
// Check if the builtin is escaping.
for _, name := range escapingBuiltins {
if x.Name() == name {
es.Add(builtin, name, cs)
return
}
}
default:
// All dynamic calls are counted as soft
// escapes. They are similar to interface
// dispatches. We cannot actually look up what
// this refers to using static analysis alone.
call, _ := hasCall(inst)
es.Add(dynamicCall, call, cs)
}
case *ssa.Alloc:
// Ignore non-heap allocations.
if !x.Heap {
return
}
// Ignore elided escapes.
call, has := hasCall(inst)
if !has {
return
}
// This is a real heap allocation.
es.Add(allocation, call, cs)
case *ssa.MakeMap:
es.Add(builtin, "makemap", cs)
case *ssa.MakeSlice:
es.Add(builtin, "makeslice", cs)
case *ssa.MakeClosure:
es.Add(builtin, "makeclosure", cs)
case *ssa.MakeChan:
es.Add(builtin, "makechan", cs)
}
return
}
var analyzeBasicBlock func(*ssa.BasicBlock) []Escapes // Recursive.
analyzeBasicBlock = func(block *ssa.BasicBlock) (rval []Escapes) {
for _, inst := range block.Instrs {
if es := analyzeInstruction(inst); !es.IsEmpty() {
rval = append(rval, es)
}
}
return
}
loadFunc = func(fn *ssa.Function) Escapes {
// Is this already available?
name := fn.RelString(pass.Pkg)
if es, ok := mergedEscapes[name]; ok {
return es
}
// In the case of a true cycle, we assume that the current
// function itself has no escapes.
//
// When evaluating the function again, the proper escapes will
// be filled in here.
allEscapes[name] = nil
mergedEscapes[name] = Escapes{}
// Perform the basic analysis.
var es []Escapes
if fn.Recover != nil {
es = append(es, analyzeBasicBlock(fn.Recover)...)
}
for _, block := range fn.Blocks {
es = append(es, analyzeBasicBlock(block)...)
}
// Check for a stack split.
if call, has := hasCall(fn); has {
var ss Escapes
ss.Add(stackSplit, call, CallSite{
LocalPos: fn.Pos(),
Resolved: linePosition(fn, fn.Parent()),
})
es = append(es, ss)
}
// Save the result and return.
//
// Note that we merge the result when saving to the facts. It
// doesn't really matter the specific escapes, as long as we
// have recorded all the appropriate classes of escapes.
summary := MergeAll(es)
allEscapes[name] = es
mergedEscapes[name] = summary
return summary
}
// Complete all local functions.
for _, fn := range state.SrcFuncs {
loadFunc(fn)
}
if !localEscapes {
// Export all findings for future packages. We only do this in
// non-local escapes mode, and expect to run this analysis
// after the SelectAnalysis.
pass.ExportPackageFact(&packageEscapeFacts{
Funcs: mergedEscapes,
})
}
// Scan all functions for violations.
for _, f := range pass.Files {
// Scan all declarations.
for _, decl := range f.Decls {
// Function declaration?
fdecl, ok := decl.(*ast.FuncDecl)
if !ok {
continue
}
var (
reasons []EscapeReason
local bool
testReasons map[EscapeReason]bool
)
if localEscapes {
// Find all hard escapes.
reasons = hardReasons
} else {
// Find all declared reasons.
reasons, local, testReasons = findReasons(pass, fdecl)
}
// Scan for matches.
fn := pass.TypesInfo.Defs[fdecl.Name].(*types.Func)
fv := state.Pkg.Prog.FuncValue(fn)
if fv == nil {
continue
}
name := fv.RelString(pass.Pkg)
all, allOk := allEscapes[name]
merged, mergedOk := mergedEscapes[name]
if !allOk || !mergedOk {
pass.Reportf(fdecl.Pos(), "internal error: function %s not found.", name)
continue
}
// Filter reasons and report.
//
// For the findings, we use all escapes.
for _, es := range all {
es.Filter(reasons, local)
es.Reportf(pass)
}
// Scan for test (required) matches.
//
// For tests we need only the merged escapes.
testReasonsFound := make(map[EscapeReason]bool)
for r := EscapeReason(0); r < reasonCount; r++ {
if merged.CallSites[r] == nil {
continue
}
// Is this local?
wantLocal, ok := testReasons[r]
isLocal := len(merged.CallSites[r]) == 1
testReasonsFound[r] = isLocal
if !ok {
continue
}
if isLocal == wantLocal {
delete(testReasons, r)
}
}
for reason, local := range testReasons {
// We didn't find the escapes we wanted.
pass.Reportf(fdecl.Pos(), fmt.Sprintf("testescapes not found: reason=%s, local=%t", reason, local))
}
if len(testReasons) > 0 {
// Report for debugging.
merged.Reportf(pass)
}
}
}
return nil, nil
}