gvisor/test/syscalls/linux/socket_ipv4_udp_unbound.cc

2217 lines
93 KiB
C++
Raw Normal View History

// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/syscalls/linux/socket_ipv4_udp_unbound.h"
#include <arpa/inet.h>
#include <net/if.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <cstdio>
#include "gtest/gtest.h"
#include "absl/memory/memory.h"
#include "test/syscalls/linux/ip_socket_test_util.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
// Check that packets are not received without a group membership. Default send
// interface configured by bind.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackNoGroup) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the first FD to the loopback. This is an alternative to
// IP_MULTICAST_IF for setting the default send interface.
auto sender_addr = V4Loopback();
EXPECT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
// Bind the second FD to the v4 any address. If multicast worked like unicast,
// this would ensure that we get the packet.
auto receiver_addr = V4Any();
EXPECT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Send the multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we did not receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Check that not setting a default send interface prevents multicast packets
// from being sent. Group membership interface configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackAddrNoDefaultSendIf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the second FD to the v4 any address to ensure that we can receive any
// unicast packet.
auto receiver_addr = V4Any();
EXPECT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallFailsWithErrno(ENETUNREACH));
}
// Check that not setting a default send interface prevents multicast packets
// from being sent. Group membership interface configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackNicNoDefaultSendIf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the second FD to the v4 any address to ensure that we can receive any
// unicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallFailsWithErrno(ENETUNREACH));
}
// Check that multicast works when the default send interface is configured by
// bind and the group membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the first FD to the loopback. This is an alternative to
// IP_MULTICAST_IF for setting the default send interface.
auto sender_addr = V4Loopback();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// bind and the group membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackNic) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the first FD to the loopback. This is an alternative to
// IP_MULTICAST_IF for setting the default send interface.
auto sender_addr = V4Loopback();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfNic) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in connect, and the group
// membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfAddrConnect) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto connect_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&connect_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
ASSERT_THAT(
RetryEINTR(connect)(socket1->get(),
reinterpret_cast<sockaddr*>(&connect_addr.addr),
connect_addr.addr_len),
SyscallSucceeds());
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(send)(socket1->get(), send_buf, sizeof(send_buf), 0),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in connect, and the group
// membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfNicConnect) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto connect_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&connect_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
ASSERT_THAT(
RetryEINTR(connect)(socket1->get(),
reinterpret_cast<sockaddr*>(&connect_addr.addr),
connect_addr.addr_len),
SyscallSucceeds());
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(send)(socket1->get(), send_buf, sizeof(send_buf), 0),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfAddrSelf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the first FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfNicSelf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the first FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in connect, and the group
// membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfAddrSelfConnect) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the first FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto connect_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&connect_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
EXPECT_THAT(
RetryEINTR(connect)(socket1->get(),
reinterpret_cast<sockaddr*>(&connect_addr.addr),
connect_addr.addr_len),
SyscallSucceeds());
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(send)(socket1->get(), send_buf, sizeof(send_buf), 0),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we did not receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in connect, and the group
// membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfNicSelfConnect) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
// Bind the first FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto connect_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&connect_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
ASSERT_THAT(
RetryEINTR(connect)(socket1->get(),
reinterpret_cast<sockaddr*>(&connect_addr.addr),
connect_addr.addr_len),
SyscallSucceeds());
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(send)(socket1->get(), send_buf, sizeof(send_buf), 0),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we did not receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfAddrSelfNoLoop) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_LOOP,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
// Bind the first FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that multicast works when the default send interface is configured by
// IP_MULTICAST_IF, the send address is specified in sendto, and the group
// membership is configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastLoopbackIfNicSelfNoLoop) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Set the default send interface.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_LOOP,
&kSockOptOff, sizeof(kSockOptOff)),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket1->get(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that dropping a group membership that does not exist fails.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastInvalidDrop) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Unregister from a membership that we didn't have.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallFailsWithErrno(EADDRNOTAVAIL));
}
// Check that dropping a group membership prevents multicast packets from being
// delivered. Default send address configured by bind and group membership
// interface configured by address.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastDropAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the first FD to the loopback. This is an alternative to
// IP_MULTICAST_IF for setting the default send interface.
auto sender_addr = V4Loopback();
EXPECT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
EXPECT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register and unregister to receive multicast packets.
ip_mreq group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we did not receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Check that dropping a group membership prevents multicast packets from being
// delivered. Default send address configured by bind and group membership
// interface configured by NIC ID.
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastDropNic) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind the first FD to the loopback. This is an alternative to
// IP_MULTICAST_IF for setting the default send interface.
auto sender_addr = V4Loopback();
EXPECT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
// Bind the second FD to the v4 any address to ensure that we can receive the
// multicast packet.
auto receiver_addr = V4Any();
EXPECT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register and unregister to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we did not receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfZero) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn iface = {};
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfInvalidNic) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn iface = {};
iface.imr_ifindex = -1;
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallFailsWithErrno(EADDRNOTAVAIL));
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfInvalidAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreq iface = {};
iface.imr_interface.s_addr = inet_addr("255.255.255");
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallFailsWithErrno(EADDRNOTAVAIL));
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetShort) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Create a valid full-sized request.
ip_mreqn iface = {};
iface.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
// Send an optlen of 1 to check that optlen is enforced.
EXPECT_THAT(
setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface, 1),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfDefault) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
in_addr get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
EXPECT_EQ(size, sizeof(get));
EXPECT_EQ(get.s_addr, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfDefaultReqn) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
// getsockopt(IP_MULTICAST_IF) can only return an in_addr, so it treats the
// first sizeof(struct in_addr) bytes of struct ip_mreqn as a struct in_addr.
// Conveniently, this corresponds to the field ip_mreqn::imr_multiaddr.
EXPECT_EQ(size, sizeof(in_addr));
// getsockopt(IP_MULTICAST_IF) will only return the interface address which
// hasn't been set.
EXPECT_EQ(get.imr_multiaddr.s_addr, 0);
EXPECT_EQ(get.imr_address.s_addr, 0);
EXPECT_EQ(get.imr_ifindex, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetAddrGetReqn) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
in_addr set = {};
set.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
ip_mreqn get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
// getsockopt(IP_MULTICAST_IF) can only return an in_addr, so it treats the
// first sizeof(struct in_addr) bytes of struct ip_mreqn as a struct in_addr.
// Conveniently, this corresponds to the field ip_mreqn::imr_multiaddr.
EXPECT_EQ(size, sizeof(in_addr));
EXPECT_EQ(get.imr_multiaddr.s_addr, set.s_addr);
EXPECT_EQ(get.imr_address.s_addr, 0);
EXPECT_EQ(get.imr_ifindex, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetReqAddrGetReqn) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreq set = {};
set.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
ip_mreqn get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
// getsockopt(IP_MULTICAST_IF) can only return an in_addr, so it treats the
// first sizeof(struct in_addr) bytes of struct ip_mreqn as a struct in_addr.
// Conveniently, this corresponds to the field ip_mreqn::imr_multiaddr.
EXPECT_EQ(size, sizeof(in_addr));
EXPECT_EQ(get.imr_multiaddr.s_addr, set.imr_interface.s_addr);
EXPECT_EQ(get.imr_address.s_addr, 0);
EXPECT_EQ(get.imr_ifindex, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetNicGetReqn) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn set = {};
set.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
ip_mreqn get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
EXPECT_EQ(size, sizeof(in_addr));
EXPECT_EQ(get.imr_multiaddr.s_addr, 0);
EXPECT_EQ(get.imr_address.s_addr, 0);
EXPECT_EQ(get.imr_ifindex, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
in_addr set = {};
set.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
in_addr get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
EXPECT_EQ(size, sizeof(get));
EXPECT_EQ(get.s_addr, set.s_addr);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetReqAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreq set = {};
set.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
in_addr get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
EXPECT_EQ(size, sizeof(get));
EXPECT_EQ(get.s_addr, set.imr_interface.s_addr);
}
TEST_P(IPv4UDPUnboundSocketTest, IpMulticastIfSetNic) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn set = {};
set.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &set,
sizeof(set)),
SyscallSucceeds());
in_addr get = {};
socklen_t size = sizeof(get);
ASSERT_THAT(
getsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &get, &size),
SyscallSucceeds());
EXPECT_EQ(size, sizeof(get));
EXPECT_EQ(get.s_addr, 0);
}
TEST_P(IPv4UDPUnboundSocketTest, TestJoinGroupNoIf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallFailsWithErrno(ENODEV));
}
TEST_P(IPv4UDPUnboundSocketTest, TestJoinGroupInvalidIf) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn group = {};
group.imr_address.s_addr = inet_addr("255.255.255");
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallFailsWithErrno(ENODEV));
}
// Check that multiple memberships are not allowed on the same socket.
TEST_P(IPv4UDPUnboundSocketTest, TestMultipleJoinsOnSingleSocket) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto fd = socket1->get();
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
EXPECT_THAT(
setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &group, sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(
setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &group, sizeof(group)),
SyscallFailsWithErrno(EADDRINUSE));
}
// Check that two sockets can join the same multicast group at the same time.
TEST_P(IPv4UDPUnboundSocketTest, TestTwoSocketsJoinSameMulticastGroup) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Drop the membership twice on each socket, the second call for each socket
// should fail.
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallFailsWithErrno(EADDRNOTAVAIL));
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
EXPECT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_DROP_MEMBERSHIP, &group,
sizeof(group)),
SyscallFailsWithErrno(EADDRNOTAVAIL));
}
// Check that two sockets can join the same multicast group at the same time,
// and both will receive data on it.
TEST_P(IPv4UDPUnboundSocketTest, TestMcastReceptionOnTwoSockets) {
std::unique_ptr<SocketPair> socket_pairs[2] = {
absl::make_unique<FDSocketPair>(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()),
ASSERT_NO_ERRNO_AND_VALUE(NewSocket())),
absl::make_unique<FDSocketPair>(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()),
ASSERT_NO_ERRNO_AND_VALUE(NewSocket()))};
ip_mreq iface = {}, group = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
auto receiver_addr = V4Any();
int bound_port = 0;
// Create two socketpairs with the exact same configuration.
for (auto& sockets : socket_pairs) {
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_IP, IP_MULTICAST_IF,
&iface, sizeof(iface)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(sockets->second_fd(), SOL_SOCKET, SO_REUSEPORT,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(sockets->second_fd(), IPPROTO_IP, IP_ADD_MEMBERSHIP,
&group, sizeof(group)),
SyscallSucceeds());
ASSERT_THAT(bind(sockets->second_fd(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
// Get the port assigned.
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(sockets->second_fd(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// On the first iteration, save the port we are bound to. On the second
// iteration, verify the port is the same as the one from the first
// iteration. In other words, both sockets listen on the same port.
if (bound_port == 0) {
bound_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
} else {
EXPECT_EQ(bound_port,
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port);
}
}
// Send a multicast packet to the group from two different sockets and verify
// it is received by both sockets that joined that group.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port = bound_port;
for (auto& sockets : socket_pairs) {
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(
RetryEINTR(sendto)(sockets->first_fd(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet on both sockets.
for (auto& sockets : socket_pairs) {
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(
RetryEINTR(recv)(sockets->second_fd(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
}
}
// Check that on two sockets that joined a group and listen on ANY, dropping
// memberships one by one will continue to deliver packets to both sockets until
// both memberships have been dropped.
TEST_P(IPv4UDPUnboundSocketTest, TestMcastReceptionWhenDroppingMemberships) {
std::unique_ptr<SocketPair> socket_pairs[2] = {
absl::make_unique<FDSocketPair>(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()),
ASSERT_NO_ERRNO_AND_VALUE(NewSocket())),
absl::make_unique<FDSocketPair>(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()),
ASSERT_NO_ERRNO_AND_VALUE(NewSocket()))};
ip_mreq iface = {}, group = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
auto receiver_addr = V4Any();
int bound_port = 0;
// Create two socketpairs with the exact same configuration.
for (auto& sockets : socket_pairs) {
ASSERT_THAT(setsockopt(sockets->first_fd(), IPPROTO_IP, IP_MULTICAST_IF,
&iface, sizeof(iface)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(sockets->second_fd(), SOL_SOCKET, SO_REUSEPORT,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(sockets->second_fd(), IPPROTO_IP, IP_ADD_MEMBERSHIP,
&group, sizeof(group)),
SyscallSucceeds());
ASSERT_THAT(bind(sockets->second_fd(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
// Get the port assigned.
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(sockets->second_fd(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// On the first iteration, save the port we are bound to. On the second
// iteration, verify the port is the same as the one from the first
// iteration. In other words, both sockets listen on the same port.
if (bound_port == 0) {
bound_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
} else {
EXPECT_EQ(bound_port,
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port);
}
}
// Drop the membership of the first socket pair and verify data is still
// received.
ASSERT_THAT(setsockopt(socket_pairs[0]->second_fd(), IPPROTO_IP,
IP_DROP_MEMBERSHIP, &group, sizeof(group)),
SyscallSucceeds());
// Send a packet from each socket_pair.
auto send_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&send_addr.addr)->sin_port = bound_port;
for (auto& sockets : socket_pairs) {
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(
RetryEINTR(sendto)(sockets->first_fd(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet on both sockets.
for (auto& sockets : socket_pairs) {
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(
RetryEINTR(recv)(sockets->second_fd(), recv_buf, sizeof(recv_buf), 0),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
}
// Drop the membership of the second socket pair and verify data stops being
// received.
ASSERT_THAT(setsockopt(socket_pairs[1]->second_fd(), IPPROTO_IP,
IP_DROP_MEMBERSHIP, &group, sizeof(group)),
SyscallSucceeds());
// Send a packet from each socket_pair.
for (auto& sockets : socket_pairs) {
char send_buf[200];
ASSERT_THAT(
RetryEINTR(sendto)(sockets->first_fd(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&send_addr.addr),
send_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
char recv_buf[sizeof(send_buf)] = {};
for (auto& sockets : socket_pairs) {
ASSERT_THAT(RetryEINTR(recv)(sockets->second_fd(), recv_buf,
sizeof(recv_buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
}
// Check that a receiving socket can bind to the multicast address before
// joining the group and receive data once the group has been joined.
TEST_P(IPv4UDPUnboundSocketTest, TestBindToMcastThenJoinThenReceive) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind second socket (receiver) to the multicast address.
auto receiver_addr = V4Multicast();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
// Update receiver_addr with the correct port number.
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Register to receive multicast packets.
ip_mreqn group = {};
group.imr_multiaddr.s_addr = inet_addr(kMulticastAddress);
group.imr_ifindex = ASSERT_NO_ERRNO_AND_VALUE(InterfaceIndex("lo"));
ASSERT_THAT(setsockopt(socket2->get(), IPPROTO_IP, IP_ADD_MEMBERSHIP, &group,
sizeof(group)),
SyscallSucceeds());
// Send a multicast packet on the first socket out the loopback interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
auto sendto_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&sendto_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&sendto_addr.addr),
sendto_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that a receiving socket can bind to the multicast address and won't
// receive multicast data if it hasn't joined the group.
TEST_P(IPv4UDPUnboundSocketTest, TestBindToMcastThenNoJoinThenNoReceive) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind second socket (receiver) to the multicast address.
auto receiver_addr = V4Multicast();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
// Update receiver_addr with the correct port number.
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Send a multicast packet on the first socket out the loopback interface.
ip_mreq iface = {};
iface.imr_interface.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(setsockopt(socket1->get(), IPPROTO_IP, IP_MULTICAST_IF, &iface,
sizeof(iface)),
SyscallSucceeds());
auto sendto_addr = V4Multicast();
reinterpret_cast<sockaddr_in*>(&sendto_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&sendto_addr.addr),
sendto_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we don't receive the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Check that a socket can bind to a multicast address and still send out
// packets.
TEST_P(IPv4UDPUnboundSocketTest, TestBindToMcastThenSend) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind second socket (receiver) to the ANY address.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Bind the first socket (sender) to the multicast address.
auto sender_addr = V4Multicast();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
socklen_t sender_addr_len = sender_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&sender_addr.addr),
&sender_addr_len),
SyscallSucceeds());
EXPECT_EQ(sender_addr_len, sender_addr.addr_len);
// Send a packet on the first socket to the loopback address.
auto sendto_addr = V4Loopback();
reinterpret_cast<sockaddr_in*>(&sendto_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&sendto_addr.addr),
sendto_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that a receiving socket can bind to the broadcast address and receive
// broadcast packets.
TEST_P(IPv4UDPUnboundSocketTest, TestBindToBcastThenReceive) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind second socket (receiver) to the broadcast address.
auto receiver_addr = V4Broadcast();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Send a broadcast packet on the first socket out the loopback interface.
EXPECT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_BROADCAST, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceedsWithValue(0));
// Note: Binding to the loopback interface makes the broadcast go out of it.
auto sender_bind_addr = V4Loopback();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_bind_addr.addr),
sender_bind_addr.addr_len),
SyscallSucceeds());
auto sendto_addr = V4Broadcast();
reinterpret_cast<sockaddr_in*>(&sendto_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&sendto_addr.addr),
sendto_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the multicast packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that a socket can bind to the broadcast address and still send out
// packets.
TEST_P(IPv4UDPUnboundSocketTest, TestBindToBcastThenSend) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind second socket (receiver) to the ANY address.
auto receiver_addr = V4Any();
ASSERT_THAT(
bind(socket2->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
socklen_t receiver_addr_len = receiver_addr.addr_len;
ASSERT_THAT(getsockname(socket2->get(),
reinterpret_cast<sockaddr*>(&receiver_addr.addr),
&receiver_addr_len),
SyscallSucceeds());
EXPECT_EQ(receiver_addr_len, receiver_addr.addr_len);
// Bind the first socket (sender) to the broadcast address.
auto sender_addr = V4Broadcast();
ASSERT_THAT(
bind(socket1->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
socklen_t sender_addr_len = sender_addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&sender_addr.addr),
&sender_addr_len),
SyscallSucceeds());
EXPECT_EQ(sender_addr_len, sender_addr.addr_len);
// Send a packet on the first socket to the loopback address.
auto sendto_addr = V4Loopback();
reinterpret_cast<sockaddr_in*>(&sendto_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port;
char send_buf[200];
RandomizeBuffer(send_buf, sizeof(send_buf));
ASSERT_THAT(RetryEINTR(sendto)(socket1->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&sendto_addr.addr),
sendto_addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Check that we received the packet.
char recv_buf[sizeof(send_buf)] = {};
ASSERT_THAT(RetryEINTR(recv)(socket2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(sizeof(recv_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Check that SO_REUSEADDR always delivers to the most recently bound socket.
TEST_P(IPv4UDPUnboundSocketTest, ReuseAddrDistribution) {
// FIXME(b/129164367): Support SO_REUSEADDR on UDP sockets.
SKIP_IF(IsRunningOnGvisor());
std::vector<std::unique_ptr<FileDescriptor>> sockets;
sockets.emplace_back(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()));
ASSERT_THAT(setsockopt(sockets[0]->get(), SOL_SOCKET, SO_REUSEADDR,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(sockets[0]->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(sockets[0]->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
constexpr int kMessageSize = 200;
for (int i = 0; i < 10; i++) {
// Add a new receiver.
sockets.emplace_back(ASSERT_NO_ERRNO_AND_VALUE(NewSocket()));
auto& last = sockets.back();
ASSERT_THAT(setsockopt(last->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(last->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Send a new message to the SO_REUSEADDR group. We use a new socket each
// time so that a new ephemeral port will be used each time. This ensures
// that we aren't doing REUSEPORT-like hash load blancing.
auto sender = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
char send_buf[kMessageSize];
RandomizeBuffer(send_buf, sizeof(send_buf));
EXPECT_THAT(RetryEINTR(sendto)(sender->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
// Verify that the most recent socket got the message. We don't expect any
// of the other sockets to have received it, but we will check that later.
char recv_buf[sizeof(send_buf)] = {};
EXPECT_THAT(
RetryEINTR(recv)(last->get(), recv_buf, sizeof(recv_buf), MSG_DONTWAIT),
SyscallSucceedsWithValue(sizeof(send_buf)));
EXPECT_EQ(0, memcmp(send_buf, recv_buf, sizeof(send_buf)));
}
// Verify that no other messages were received.
for (auto& socket : sockets) {
char recv_buf[kMessageSize] = {};
EXPECT_THAT(RetryEINTR(recv)(socket->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
TEST_P(IPv4UDPUnboundSocketTest, BindReuseAddrThenReusePort) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(IPv4UDPUnboundSocketTest, BindReusePortThenReuseAddr) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(IPv4UDPUnboundSocketTest, BindReuseAddrReusePortConvertibleToReusePort) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Bind socket3 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(IPv4UDPUnboundSocketTest, BindReuseAddrReusePortConvertibleToReuseAddr) {
// FIXME(b/129164367): Support SO_REUSEADDR on UDP sockets.
SKIP_IF(IsRunningOnGvisor());
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Bind socket3 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(IPv4UDPUnboundSocketTest, BindReuseAddrReusePortConversionReversable1) {
// FIXME(b/129164367): Support SO_REUSEADDR on UDP sockets.
SKIP_IF(IsRunningOnGvisor());
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Close socket2 to revert to just socket1 with REUSEADDR and REUSEPORT.
socket2->reset();
// Bind socket3 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
}
TEST_P(IPv4UDPUnboundSocketTest, BindReuseAddrReusePortConversionReversable2) {
// FIXME(b/129164367): Support SO_REUSEADDR on UDP sockets.
SKIP_IF(IsRunningOnGvisor());
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Close socket2 to revert to just socket1 with REUSEADDR and REUSEPORT.
socket2->reset();
// Bind socket3 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
}
TEST_P(IPv4UDPUnboundSocketTest, BindDoubleReuseAddrReusePortThenReusePort) {
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, also with REUSEADDR and
// REUSEPORT.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Bind socket3 to the same address as socket1, only with REUSEPORT.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
}
TEST_P(IPv4UDPUnboundSocketTest, BindDoubleReuseAddrReusePortThenReuseAddr) {
// FIXME(b/129164367): Support SO_REUSEADDR on UDP sockets.
SKIP_IF(IsRunningOnGvisor());
auto socket1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto socket3 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Bind socket1 with REUSEADDR and REUSEPORT.
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket1->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(socket1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(socket1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind socket2 to the same address as socket1, also with REUSEADDR and
// REUSEPORT.
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(socket2->get(), SOL_SOCKET, SO_REUSEPORT, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
// Bind socket3 to the same address as socket1, only with REUSEADDR.
ASSERT_THAT(setsockopt(socket3->get(), SOL_SOCKET, SO_REUSEADDR, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(socket3->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
}
// Check that REUSEPORT takes precedence over REUSEADDR.
TEST_P(IPv4UDPUnboundSocketTest, ReuseAddrReusePortDistribution) {
auto receiver1 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto receiver2 = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
ASSERT_THAT(setsockopt(receiver1->get(), SOL_SOCKET, SO_REUSEADDR,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(receiver1->get(), SOL_SOCKET, SO_REUSEPORT,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
// Bind the first socket to the loopback and take note of the selected port.
auto addr = V4Loopback();
ASSERT_THAT(bind(receiver1->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
socklen_t addr_len = addr.addr_len;
ASSERT_THAT(getsockname(receiver1->get(),
reinterpret_cast<sockaddr*>(&addr.addr), &addr_len),
SyscallSucceeds());
EXPECT_EQ(addr_len, addr.addr_len);
// Bind receiver2 to the same address as socket1, also with REUSEADDR and
// REUSEPORT.
ASSERT_THAT(setsockopt(receiver2->get(), SOL_SOCKET, SO_REUSEADDR,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(setsockopt(receiver2->get(), SOL_SOCKET, SO_REUSEPORT,
&kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
ASSERT_THAT(bind(receiver2->get(), reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceeds());
constexpr int kMessageSize = 10;
for (int i = 0; i < 100; ++i) {
// Send a new message to the REUSEADDR/REUSEPORT group. We use a new socket
// each time so that a new ephemerial port will be used each time. This
// ensures that we cycle through hashes.
auto sender = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
char send_buf[kMessageSize] = {};
EXPECT_THAT(RetryEINTR(sendto)(sender->get(), send_buf, sizeof(send_buf), 0,
reinterpret_cast<sockaddr*>(&addr.addr),
addr.addr_len),
SyscallSucceedsWithValue(sizeof(send_buf)));
}
// Check that both receivers got messages. This checks that we are using load
// balancing (REUSEPORT) instead of the most recently bound socket
// (REUSEADDR).
char recv_buf[kMessageSize] = {};
EXPECT_THAT(RetryEINTR(recv)(receiver1->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(kMessageSize));
EXPECT_THAT(RetryEINTR(recv)(receiver2->get(), recv_buf, sizeof(recv_buf),
MSG_DONTWAIT),
SyscallSucceedsWithValue(kMessageSize));
}
// Test that socket will receive packet info control message.
TEST_P(IPv4UDPUnboundSocketTest, SetAndReceiveIPPKTINFO) {
// TODO(gvisor.dev/issue/1202): ioctl() is not supported by hostinet.
SKIP_IF((IsRunningWithHostinet()));
auto sender = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto receiver = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
auto sender_addr = V4Loopback();
int level = SOL_IP;
int type = IP_PKTINFO;
ASSERT_THAT(
bind(receiver->get(), reinterpret_cast<sockaddr*>(&sender_addr.addr),
sender_addr.addr_len),
SyscallSucceeds());
socklen_t sender_addr_len = sender_addr.addr_len;
ASSERT_THAT(getsockname(receiver->get(),
reinterpret_cast<sockaddr*>(&sender_addr.addr),
&sender_addr_len),
SyscallSucceeds());
EXPECT_EQ(sender_addr_len, sender_addr.addr_len);
auto receiver_addr = V4Loopback();
reinterpret_cast<sockaddr_in*>(&receiver_addr.addr)->sin_port =
reinterpret_cast<sockaddr_in*>(&sender_addr.addr)->sin_port;
ASSERT_THAT(
connect(sender->get(), reinterpret_cast<sockaddr*>(&receiver_addr.addr),
receiver_addr.addr_len),
SyscallSucceeds());
// Allow socket to receive control message.
ASSERT_THAT(
setsockopt(receiver->get(), level, type, &kSockOptOn, sizeof(kSockOptOn)),
SyscallSucceeds());
// Prepare message to send.
constexpr size_t kDataLength = 1024;
msghdr sent_msg = {};
iovec sent_iov = {};
char sent_data[kDataLength];
sent_iov.iov_base = sent_data;
sent_iov.iov_len = kDataLength;
sent_msg.msg_iov = &sent_iov;
sent_msg.msg_iovlen = 1;
sent_msg.msg_flags = 0;
ASSERT_THAT(RetryEINTR(sendmsg)(sender->get(), &sent_msg, 0),
SyscallSucceedsWithValue(kDataLength));
msghdr received_msg = {};
iovec received_iov = {};
char received_data[kDataLength];
char received_cmsg_buf[CMSG_SPACE(sizeof(in_pktinfo))] = {};
size_t cmsg_data_len = sizeof(in_pktinfo);
received_iov.iov_base = received_data;
received_iov.iov_len = kDataLength;
received_msg.msg_iov = &received_iov;
received_msg.msg_iovlen = 1;
received_msg.msg_controllen = CMSG_LEN(cmsg_data_len);
received_msg.msg_control = received_cmsg_buf;
ASSERT_THAT(RetryEINTR(recvmsg)(receiver->get(), &received_msg, 0),
SyscallSucceedsWithValue(kDataLength));
cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(cmsg_data_len));
EXPECT_EQ(cmsg->cmsg_level, level);
EXPECT_EQ(cmsg->cmsg_type, type);
// Get loopback index.
ifreq ifr = {};
absl::SNPrintF(ifr.ifr_name, IFNAMSIZ, "lo");
ASSERT_THAT(ioctl(sender->get(), SIOCGIFINDEX, &ifr), SyscallSucceeds());
ASSERT_NE(ifr.ifr_ifindex, 0);
// Check the data
in_pktinfo received_pktinfo = {};
memcpy(&received_pktinfo, CMSG_DATA(cmsg), sizeof(in_pktinfo));
EXPECT_EQ(received_pktinfo.ipi_ifindex, ifr.ifr_ifindex);
EXPECT_EQ(received_pktinfo.ipi_spec_dst.s_addr, htonl(INADDR_LOOPBACK));
EXPECT_EQ(received_pktinfo.ipi_addr.s_addr, htonl(INADDR_LOOPBACK));
}
} // namespace testing
} // namespace gvisor