gvisor/pkg/tcpip/transport/tcp/snd.go

1181 lines
36 KiB
Go
Raw Normal View History

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tcp
import (
"math"
"sync"
"sync/atomic"
"time"
"gvisor.googlesource.com/gvisor/pkg/sleep"
"gvisor.googlesource.com/gvisor/pkg/tcpip"
"gvisor.googlesource.com/gvisor/pkg/tcpip/buffer"
"gvisor.googlesource.com/gvisor/pkg/tcpip/header"
"gvisor.googlesource.com/gvisor/pkg/tcpip/seqnum"
)
const (
// minRTO is the minimum allowed value for the retransmit timeout.
minRTO = 200 * time.Millisecond
// InitialCwnd is the initial congestion window.
InitialCwnd = 10
// nDupAckThreshold is the number of duplicate ACK's required
// before fast-retransmit is entered.
nDupAckThreshold = 3
)
// congestionControl is an interface that must be implemented by any supported
// congestion control algorithm.
type congestionControl interface {
// HandleNDupAcks is invoked when sender.dupAckCount >= nDupAckThreshold
// just before entering fast retransmit.
HandleNDupAcks()
// HandleRTOExpired is invoked when the retransmit timer expires.
HandleRTOExpired()
// Update is invoked when processing inbound acks. It's passed the
// number of packet's that were acked by the most recent cumulative
// acknowledgement.
Update(packetsAcked int)
// PostRecovery is invoked when the sender is exiting a fast retransmit/
// recovery phase. This provides congestion control algorithms a way
// to adjust their state when exiting recovery.
PostRecovery()
}
// sender holds the state necessary to send TCP segments.
//
// +stateify savable
type sender struct {
ep *endpoint
// lastSendTime is the timestamp when the last packet was sent.
lastSendTime time.Time `state:".(unixTime)"`
// dupAckCount is the number of duplicated acks received. It is used for
// fast retransmit.
dupAckCount int
// fr holds state related to fast recovery.
fr fastRecovery
// sndCwnd is the congestion window, in packets.
sndCwnd int
// sndSsthresh is the threshold between slow start and congestion
// avoidance.
sndSsthresh int
// sndCAAckCount is the number of packets acknowledged during congestion
// avoidance. When enough packets have been ack'd (typically cwnd
// packets), the congestion window is incremented by one.
sndCAAckCount int
// outstanding is the number of outstanding packets, that is, packets
// that have been sent but not yet acknowledged.
outstanding int
// sndWnd is the send window size.
sndWnd seqnum.Size
// sndUna is the next unacknowledged sequence number.
sndUna seqnum.Value
// sndNxt is the sequence number of the next segment to be sent.
sndNxt seqnum.Value
// sndNxtList is the sequence number of the next segment to be added to
// the send list.
sndNxtList seqnum.Value
// rttMeasureSeqNum is the sequence number being used for the latest RTT
// measurement.
rttMeasureSeqNum seqnum.Value
// rttMeasureTime is the time when the rttMeasureSeqNum was sent.
rttMeasureTime time.Time `state:".(unixTime)"`
closed bool
writeNext *segment
writeList segmentList
resendTimer timer `state:"nosave"`
resendWaker sleep.Waker `state:"nosave"`
// rtt.srtt, rtt.rttvar, and rto are the "smoothed round-trip time",
// "round-trip time variation" and "retransmit timeout", as defined in
// section 2 of RFC 6298.
rtt rtt
rto time.Duration
srttInited bool
// maxPayloadSize is the maximum size of the payload of a given segment.
// It is initialized on demand.
maxPayloadSize int
// gso is set if generic segmentation offload is enabled.
gso bool
// sndWndScale is the number of bits to shift left when reading the send
// window size from a segment.
sndWndScale uint8
// maxSentAck is the maxium acknowledgement actually sent.
maxSentAck seqnum.Value
// cc is the congestion control algorithm in use for this sender.
cc congestionControl
}
// rtt is a synchronization wrapper used to appease stateify. See the comment
// in sender, where it is used.
//
// +stateify savable
type rtt struct {
sync.Mutex `state:"nosave"`
srtt time.Duration
rttvar time.Duration
}
// fastRecovery holds information related to fast recovery from a packet loss.
//
// +stateify savable
type fastRecovery struct {
// active whether the endpoint is in fast recovery. The following fields
// are only meaningful when active is true.
active bool
// first and last represent the inclusive sequence number range being
// recovered.
first seqnum.Value
last seqnum.Value
// maxCwnd is the maximum value the congestion window may be inflated to
// due to duplicate acks. This exists to avoid attacks where the
// receiver intentionally sends duplicate acks to artificially inflate
// the sender's cwnd.
maxCwnd int
// highRxt is the highest sequence number which has been retransmitted
// during the current loss recovery phase.
// See: RFC 6675 Section 2 for details.
highRxt seqnum.Value
// rescueRxt is the highest sequence number which has been
// optimistically retransmitted to prevent stalling of the ACK clock
// when there is loss at the end of the window and no new data is
// available for transmission.
// See: RFC 6675 Section 2 for details.
rescueRxt seqnum.Value
}
func newSender(ep *endpoint, iss, irs seqnum.Value, sndWnd seqnum.Size, mss uint16, sndWndScale int) *sender {
// The sender MUST reduce the TCP data length to account for any IP or
// TCP options that it is including in the packets that it sends.
// See: https://tools.ietf.org/html/rfc6691#section-2
maxPayloadSize := int(mss) - ep.maxOptionSize()
s := &sender{
ep: ep,
sndCwnd: InitialCwnd,
sndSsthresh: math.MaxInt64,
sndWnd: sndWnd,
sndUna: iss + 1,
sndNxt: iss + 1,
sndNxtList: iss + 1,
rto: 1 * time.Second,
rttMeasureSeqNum: iss + 1,
lastSendTime: time.Now(),
maxPayloadSize: maxPayloadSize,
maxSentAck: irs + 1,
fr: fastRecovery{
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 1.
last: iss,
highRxt: iss,
rescueRxt: iss,
},
gso: ep.gso != nil,
}
if s.gso {
s.ep.gso.MSS = uint16(maxPayloadSize)
}
s.cc = s.initCongestionControl(ep.cc)
// A negative sndWndScale means that no scaling is in use, otherwise we
// store the scaling value.
if sndWndScale > 0 {
s.sndWndScale = uint8(sndWndScale)
}
s.resendTimer.init(&s.resendWaker)
s.updateMaxPayloadSize(int(ep.route.MTU()), 0)
// Initialize SACK Scoreboard after updating max payload size as we use
// the maxPayloadSize as the smss when determining if a segment is lost
// etc.
s.ep.scoreboard = NewSACKScoreboard(uint16(s.maxPayloadSize), iss)
return s
}
func (s *sender) initCongestionControl(congestionControlName CongestionControlOption) congestionControl {
switch congestionControlName {
case ccCubic:
return newCubicCC(s)
case ccReno:
fallthrough
default:
return newRenoCC(s)
}
}
// updateMaxPayloadSize updates the maximum payload size based on the given
// MTU. If this is in response to "packet too big" control packets (indicated
// by the count argument), it also reduces the number of outstanding packets and
// attempts to retransmit the first packet above the MTU size.
func (s *sender) updateMaxPayloadSize(mtu, count int) {
m := mtu - header.TCPMinimumSize
m -= s.ep.maxOptionSize()
// We don't adjust up for now.
if m >= s.maxPayloadSize {
return
}
// Make sure we can transmit at least one byte.
if m <= 0 {
m = 1
}
s.maxPayloadSize = m
if s.gso {
s.ep.gso.MSS = uint16(m)
}
if count == 0 {
// updateMaxPayloadSize is also called when the sender is created.
// and there is no data to send in such cases. Return immediately.
return
}
// Update the scoreboard's smss to reflect the new lowered
// maxPayloadSize.
s.ep.scoreboard.smss = uint16(m)
s.outstanding -= count
if s.outstanding < 0 {
s.outstanding = 0
}
// Rewind writeNext to the first segment exceeding the MTU. Do nothing
// if it is already before such a packet.
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if seg == s.writeNext {
// We got to writeNext before we could find a segment
// exceeding the MTU.
break
}
if seg.data.Size() > m {
// We found a segment exceeding the MTU. Rewind
// writeNext and try to retransmit it.
s.writeNext = seg
break
}
}
// Since we likely reduced the number of outstanding packets, we may be
// ready to send some more.
s.sendData()
}
// sendAck sends an ACK segment.
func (s *sender) sendAck() {
s.sendSegmentFromView(buffer.VectorisedView{}, header.TCPFlagAck, s.sndNxt)
}
// updateRTO updates the retransmit timeout when a new roud-trip time is
// available. This is done in accordance with section 2 of RFC 6298.
func (s *sender) updateRTO(rtt time.Duration) {
s.rtt.Lock()
if !s.srttInited {
s.rtt.rttvar = rtt / 2
s.rtt.srtt = rtt
s.srttInited = true
} else {
diff := s.rtt.srtt - rtt
if diff < 0 {
diff = -diff
}
Fix RTT estimation when timestamp option is enabled. From RFC7323#Section-4 The [RFC6298] RTT estimator has weighting factors, alpha and beta, based on an implicit assumption that at most one RTTM will be sampled per RTT. When multiple RTTMs per RTT are available to update the RTT estimator, an implementation SHOULD try to adhere to the spirit of the history specified in [RFC6298]. An implementation suggestion is detailed in Appendix G. From RFC7323#appendix-G Appendix G. RTO Calculation Modification Taking multiple RTT samples per window would shorten the history calculated by the RTO mechanism in [RFC6298], and the below algorithm aims to maintain a similar history as originally intended by [RFC6298]. It is roughly known how many samples a congestion window worth of data will yield, not accounting for ACK compression, and ACK losses. Such events will result in more history of the path being reflected in the final value for RTO, and are uncritical. This modification will ensure that a similar amount of time is taken into account for the RTO estimation, regardless of how many samples are taken per window: ExpectedSamples = ceiling(FlightSize / (SMSS * 2)) alpha' = alpha / ExpectedSamples beta' = beta / ExpectedSamples Note that the factor 2 in ExpectedSamples is due to "Delayed ACKs". Instead of using alpha and beta in the algorithm of [RFC6298], use alpha' and beta' instead: RTTVAR <- (1 - beta') * RTTVAR + beta' * |SRTT - R'| SRTT <- (1 - alpha') * SRTT + alpha' * R' (for each sample R') PiperOrigin-RevId: 213644795 Change-Id: I52278b703540408938a8edb8c38be97b37f4a10e
2018-09-19 16:58:10 +00:00
// Use RFC6298 standard algorithm to update rttvar and srtt when
// no timestamps are available.
if !s.ep.sendTSOk {
s.rtt.rttvar = (3*s.rtt.rttvar + diff) / 4
s.rtt.srtt = (7*s.rtt.srtt + rtt) / 8
} else {
// When we are taking RTT measurements of every ACK then
// we need to use a modified method as specified in
// https://tools.ietf.org/html/rfc7323#appendix-G
if s.outstanding == 0 {
s.rtt.Unlock()
return
}
// Netstack measures congestion window/inflight all in
// terms of packets and not bytes. This is similar to
// how linux also does cwnd and inflight. In practice
// this approximation works as expected.
expectedSamples := math.Ceil(float64(s.outstanding) / 2)
// alpha & beta values are the original values as recommended in
// https://tools.ietf.org/html/rfc6298#section-2.3.
const alpha = 0.125
const beta = 0.25
alphaPrime := alpha / expectedSamples
betaPrime := beta / expectedSamples
rttVar := (1-betaPrime)*s.rtt.rttvar.Seconds() + betaPrime*diff.Seconds()
srtt := (1-alphaPrime)*s.rtt.srtt.Seconds() + alphaPrime*rtt.Seconds()
s.rtt.rttvar = time.Duration(rttVar * float64(time.Second))
s.rtt.srtt = time.Duration(srtt * float64(time.Second))
}
}
s.rto = s.rtt.srtt + 4*s.rtt.rttvar
s.rtt.Unlock()
if s.rto < minRTO {
s.rto = minRTO
}
}
// resendSegment resends the first unacknowledged segment.
func (s *sender) resendSegment() {
// Don't use any segments we already sent to measure RTT as they may
// have been affected by packets being lost.
s.rttMeasureSeqNum = s.sndNxt
// Resend the segment.
if seg := s.writeList.Front(); seg != nil {
if seg.data.Size() > s.maxPayloadSize {
s.splitSeg(seg, s.maxPayloadSize)
}
// See: RFC 6675 section 5 Step 4.3
//
// To prevent retransmission, set both the HighRXT and RescueRXT
// to the highest sequence number in the retransmitted segment.
s.fr.highRxt = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size())) - 1
s.fr.rescueRxt = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size())) - 1
s.sendSegment(seg)
s.ep.stack.Stats().TCP.FastRetransmit.Increment()
// Run SetPipe() as per RFC 6675 section 5 Step 4.4
s.SetPipe()
}
}
// retransmitTimerExpired is called when the retransmit timer expires, and
// unacknowledged segments are assumed lost, and thus need to be resent.
// Returns true if the connection is still usable, or false if the connection
// is deemed lost.
func (s *sender) retransmitTimerExpired() bool {
// Check if the timer actually expired or if it's a spurious wake due
// to a previously orphaned runtime timer.
if !s.resendTimer.checkExpiration() {
return true
}
s.ep.stack.Stats().TCP.Timeouts.Increment()
// Give up if we've waited more than a minute since the last resend.
if s.rto >= 60*time.Second {
return false
}
// Set new timeout. The timer will be restarted by the call to sendData
// below.
s.rto *= 2
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 4.
//
// Retransmit timeouts:
// After a retransmit timeout, record the highest sequence number
// transmitted in the variable recover, and exit the fast recovery
// procedure if applicable.
s.fr.last = s.sndNxt - 1
if s.fr.active {
// We were attempting fast recovery but were not successful.
// Leave the state. We don't need to update ssthresh because it
// has already been updated when entered fast-recovery.
s.leaveFastRecovery()
}
s.cc.HandleRTOExpired()
// Mark the next segment to be sent as the first unacknowledged one and
// start sending again. Set the number of outstanding packets to 0 so
// that we'll be able to retransmit.
//
// We'll keep on transmitting (or retransmitting) as we get acks for
// the data we transmit.
s.outstanding = 0
// Expunge all SACK information as per https://tools.ietf.org/html/rfc6675#section-5.1
//
// In order to avoid memory deadlocks, the TCP receiver is allowed to
// discard data that has already been selectively acknowledged. As a
// result, [RFC2018] suggests that a TCP sender SHOULD expunge the SACK
// information gathered from a receiver upon a retransmission timeout
// (RTO) "since the timeout might indicate that the data receiver has
// reneged." Additionally, a TCP sender MUST "ignore prior SACK
// information in determining which data to retransmit."
//
// NOTE: We take the stricter interpretation and just expunge all
// information as we lack more rigorous checks to validate if the SACK
// information is usable after an RTO.
s.ep.scoreboard.Reset()
s.writeNext = s.writeList.Front()
s.sendData()
return true
}
// pCount returns the number of packets in the segment. Due to GSO, a segment
// can be composed of multiple packets.
func (s *sender) pCount(seg *segment) int {
size := seg.data.Size()
if size == 0 {
return 1
}
return (size-1)/s.maxPayloadSize + 1
}
// splitSeg splits a given segment at the size specified and inserts the
// remainder as a new segment after the current one in the write list.
func (s *sender) splitSeg(seg *segment, size int) {
if seg.data.Size() <= size {
return
}
// Split this segment up.
nSeg := seg.clone()
nSeg.data.TrimFront(size)
nSeg.sequenceNumber.UpdateForward(seqnum.Size(size))
s.writeList.InsertAfter(seg, nSeg)
seg.data.CapLength(size)
}
// NextSeg implements the RFC6675 NextSeg() operation. It returns segments that
// match rule 1, 3 and 4 of the NextSeg() operation defined in RFC6675. Rule 2
// is handled by the normal send logic.
func (s *sender) NextSeg() (nextSeg1, nextSeg3, nextSeg4 *segment) {
var s3 *segment
var s4 *segment
smss := s.ep.scoreboard.SMSS()
// Step 1.
for seg := s.writeList.Front(); seg != nil; seg = seg.Next() {
if !s.isAssignedSequenceNumber(seg) {
break
}
segSeq := seg.sequenceNumber
if seg.data.Size() > int(smss) {
s.splitSeg(seg, int(smss))
}
// See RFC 6675 Section 4
//
// 1. If there exists a smallest unSACKED sequence number
// 'S2' that meets the following 3 criteria for determinig
// loss, the sequence range of one segment of up to SMSS
// octects starting with S2 MUST be returned.
if !s.ep.scoreboard.IsSACKED(header.SACKBlock{segSeq, segSeq.Add(1)}) {
// NextSeg():
//
// (1.a) S2 is greater than HighRxt
// (1.b) S2 is less than highest octect covered by
// any received SACK.
if s.fr.highRxt.LessThan(segSeq) && segSeq.LessThan(s.ep.scoreboard.maxSACKED) {
// NextSeg():
// (1.c) IsLost(S2) returns true.
if s.ep.scoreboard.IsLost(segSeq) {
return seg, s3, s4
}
// NextSeg():
//
// (3): If the conditions for rules (1) and (2)
// fail, but there exists an unSACKed sequence
// number S3 that meets the criteria for
// detecting loss given in steps 1.a and 1.b
// above (specifically excluding (1.c)) then one
// segment of upto SMSS octets starting with S3
// SHOULD be returned.
if s3 == nil {
s3 = seg
}
}
// NextSeg():
//
// (4) If the conditions for (1), (2) and (3) fail,
// but there exists outstanding unSACKED data, we
// provide the opportunity for a single "rescue"
// retransmission per entry into loss recovery. If
// HighACK is greater than RescueRxt, the one
// segment of upto SMSS octects that MUST include
// the highest outstanding unSACKed sequence number
// SHOULD be returned.
if s.fr.rescueRxt.LessThan(s.sndUna - 1) {
if s4 != nil {
if s4.sequenceNumber.LessThan(segSeq) {
s4 = seg
}
} else {
s4 = seg
}
s.fr.rescueRxt = s.fr.last
}
}
}
return nil, s3, s4
}
// maybeSendSegment tries to send the specified segment and either coalesces
// other segments into this one or splits the specified segment based on the
// lower of the specified limit value or the receivers window size specified by
// end.
func (s *sender) maybeSendSegment(seg *segment, limit int, end seqnum.Value) (sent bool) {
// We abuse the flags field to determine if we have already
// assigned a sequence number to this segment.
if !s.isAssignedSequenceNumber(seg) {
// Merge segments if allowed.
if seg.data.Size() != 0 {
available := int(seg.sequenceNumber.Size(end))
if available > limit {
available = limit
}
// nextTooBig indicates that the next segment was too
// large to entirely fit in the current segment. It
// would be possible to split the next segment and merge
// the portion that fits, but unexpectedly splitting
// segments can have user visible side-effects which can
// break applications. For example, RFC 7766 section 8
// says that the length and data of a DNS response
// should be sent in the same TCP segment to avoid
// triggering bugs in poorly written DNS
// implementations.
var nextTooBig bool
for seg.Next() != nil && seg.Next().data.Size() != 0 {
if seg.data.Size()+seg.Next().data.Size() > available {
nextTooBig = true
break
}
seg.data.Append(seg.Next().data)
// Consume the segment that we just merged in.
s.writeList.Remove(seg.Next())
}
if !nextTooBig && seg.data.Size() < available {
// Segment is not full.
if s.outstanding > 0 && atomic.LoadUint32(&s.ep.delay) != 0 {
// Nagle's algorithm. From Wikipedia:
// Nagle's algorithm works by
// combining a number of small
// outgoing messages and sending them
// all at once. Specifically, as long
// as there is a sent packet for which
// the sender has received no
// acknowledgment, the sender should
// keep buffering its output until it
// has a full packet's worth of
// output, thus allowing output to be
// sent all at once.
return false
}
if atomic.LoadUint32(&s.ep.cork) != 0 {
// Hold back the segment until full.
return false
}
}
}
// Assign flags. We don't do it above so that we can merge
// additional data if Nagle holds the segment.
seg.sequenceNumber = s.sndNxt
seg.flags = header.TCPFlagAck | header.TCPFlagPsh
}
var segEnd seqnum.Value
if seg.data.Size() == 0 {
if s.writeList.Back() != seg {
panic("FIN segments must be the final segment in the write list.")
}
seg.flags = header.TCPFlagAck | header.TCPFlagFin
segEnd = seg.sequenceNumber.Add(1)
} else {
// We're sending a non-FIN segment.
if seg.flags&header.TCPFlagFin != 0 {
panic("Netstack queues FIN segments without data.")
}
if !seg.sequenceNumber.LessThan(end) {
return false
}
available := int(seg.sequenceNumber.Size(end))
if available == 0 {
return false
}
if available > limit {
available = limit
}
if seg.data.Size() > available {
s.splitSeg(seg, available)
}
segEnd = seg.sequenceNumber.Add(seqnum.Size(seg.data.Size()))
}
s.sendSegment(seg)
// Update sndNxt if we actually sent new data (as opposed to
// retransmitting some previously sent data).
if s.sndNxt.LessThan(segEnd) {
s.sndNxt = segEnd
}
return true
}
// handleSACKRecovery implements the loss recovery phase as described in RFC6675
// section 5, step C.
func (s *sender) handleSACKRecovery(limit int, end seqnum.Value) (dataSent bool) {
s.SetPipe()
for s.outstanding < s.sndCwnd {
nextSeg, s3, s4 := s.NextSeg()
if nextSeg == nil {
// NextSeg():
//
// Step (2): "If no sequence number 'S2' per rule (1)
// exists but there exists available unsent data and the
// receiver's advertised window allows, the sequence
// range of one segment of up to SMSS octets of
// previously unsent data starting with sequence number
// HighData+1 MUST be returned."
for seg := s.writeNext; seg != nil; seg = seg.Next() {
if s.isAssignedSequenceNumber(seg) && seg.sequenceNumber.LessThan(s.sndNxt) {
continue
}
// Step C.3 described below is handled by
// maybeSendSegment which increments sndNxt when
// a segment is transmitted.
//
// Step C.3 "If any of the data octets sent in
// (C.1) are above HighData, HighData must be
// updated to reflect the transmission of
// previously unsent data."
if sent := s.maybeSendSegment(seg, limit, end); !sent {
break
}
dataSent = true
s.outstanding++
s.writeNext = seg.Next()
nextSeg = seg
break
}
if nextSeg != nil {
continue
}
}
rescueRtx := false
if nextSeg == nil && s3 != nil {
nextSeg = s3
}
if nextSeg == nil && s4 != nil {
nextSeg = s4
rescueRtx = true
}
if nextSeg == nil {
break
}
segEnd := nextSeg.sequenceNumber.Add(nextSeg.logicalLen())
if !rescueRtx && nextSeg.sequenceNumber.LessThan(s.sndNxt) {
// RFC 6675, Step C.2
//
// "If any of the data octets sent in (C.1) are below
// HighData, HighRxt MUST be set to the highest sequence
// number of the retransmitted segment unless NextSeg ()
// rule (4) was invoked for this retransmission."
s.fr.highRxt = segEnd - 1
}
// RFC 6675, Step C.4.
//
// "The estimate of the amount of data outstanding in the network
// must be updated by incrementing pipe by the number of octets
// transmitted in (C.1)."
s.outstanding++
dataSent = true
s.sendSegment(nextSeg)
}
return dataSent
}
// sendData sends new data segments. It is called when data becomes available or
// when the send window opens up.
func (s *sender) sendData() {
limit := s.maxPayloadSize
if s.gso {
limit = int(s.ep.gso.MaxSize - header.TCPHeaderMaximumSize)
}
end := s.sndUna.Add(s.sndWnd)
// Reduce the congestion window to min(IW, cwnd) per RFC 5681, page 10.
// "A TCP SHOULD set cwnd to no more than RW before beginning
// transmission if the TCP has not sent data in the interval exceeding
// the retrasmission timeout."
if !s.fr.active && time.Now().Sub(s.lastSendTime) > s.rto {
if s.sndCwnd > InitialCwnd {
s.sndCwnd = InitialCwnd
}
}
var dataSent bool
// RFC 6675 recovery algorithm step C 1-5.
if s.fr.active && s.ep.sackPermitted {
dataSent = s.handleSACKRecovery(s.maxPayloadSize, end)
} else {
for seg := s.writeNext; seg != nil && s.outstanding < s.sndCwnd; seg = seg.Next() {
cwndLimit := (s.sndCwnd - s.outstanding) * s.maxPayloadSize
if cwndLimit < limit {
limit = cwndLimit
}
if s.isAssignedSequenceNumber(seg) && s.ep.sackPermitted && s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
continue
}
if sent := s.maybeSendSegment(seg, limit, end); !sent {
break
}
dataSent = true
s.outstanding++
s.writeNext = seg.Next()
}
}
if dataSent {
// We sent data, so we should stop the keepalive timer to ensure
// that no keepalives are sent while there is pending data.
s.ep.disableKeepaliveTimer()
}
// Enable the timer if we have pending data and it's not enabled yet.
if !s.resendTimer.enabled() && s.sndUna != s.sndNxt {
s.resendTimer.enable(s.rto)
}
// If we have no more pending data, start the keepalive timer.
if s.sndUna == s.sndNxt {
s.ep.resetKeepaliveTimer(false)
}
}
func (s *sender) enterFastRecovery() {
s.fr.active = true
// Save state to reflect we're now in fast recovery.
//
// See : https://tools.ietf.org/html/rfc5681#section-3.2 Step 3.
// We inflate the cwnd by 3 to account for the 3 packets which triggered
// the 3 duplicate ACKs and are now not in flight.
s.sndCwnd = s.sndSsthresh + 3
s.fr.first = s.sndUna
s.fr.last = s.sndNxt - 1
s.fr.maxCwnd = s.sndCwnd + s.outstanding
if s.ep.sackPermitted {
s.ep.stack.Stats().TCP.SACKRecovery.Increment()
return
}
s.ep.stack.Stats().TCP.FastRecovery.Increment()
}
func (s *sender) leaveFastRecovery() {
s.fr.active = false
s.fr.maxCwnd = 0
s.dupAckCount = 0
// Deflate cwnd. It had been artificially inflated when new dups arrived.
s.sndCwnd = s.sndSsthresh
s.cc.PostRecovery()
}
func (s *sender) handleFastRecovery(seg *segment) (rtx bool) {
ack := seg.ackNumber
// We are in fast recovery mode. Ignore the ack if it's out of
// range.
if !ack.InRange(s.sndUna, s.sndNxt+1) {
return false
}
// Leave fast recovery if it acknowledges all the data covered by
// this fast recovery session.
if s.fr.last.LessThan(ack) {
s.leaveFastRecovery()
return false
}
if s.ep.sackPermitted {
// When SACK is enabled we let retransmission be governed by
// the SACK logic.
return false
}
// Don't count this as a duplicate if it is carrying data or
// updating the window.
if seg.logicalLen() != 0 || s.sndWnd != seg.window {
return false
}
// Inflate the congestion window if we're getting duplicate acks
// for the packet we retransmitted.
if ack == s.fr.first {
// We received a dup, inflate the congestion window by 1 packet
// if we're not at the max yet. Only inflate the window if
// regular FastRecovery is in use, RFC6675 does not require
// inflating cwnd on duplicate ACKs.
if s.sndCwnd < s.fr.maxCwnd {
s.sndCwnd++
}
return false
}
// A partial ack was received. Retransmit this packet and
// remember it so that we don't retransmit it again. We don't
// inflate the window because we're putting the same packet back
// onto the wire.
//
// N.B. The retransmit timer will be reset by the caller.
s.fr.first = ack
s.dupAckCount = 0
return true
}
// isAssignedSequenceNumber relies on the fact that we only set flags once a
// sequencenumber is assigned and that is only done right before we send the
// segment. As a result any segment that has a non-zero flag has a valid
// sequence number assigned to it.
func (s *sender) isAssignedSequenceNumber(seg *segment) bool {
return seg.flags != 0
}
// SetPipe implements the SetPipe() function described in RFC6675. Netstack
// maintains the congestion window in number of packets and not bytes, so
// SetPipe() here measures number of outstanding packets rather than actual
// outstanding bytes in the network.
func (s *sender) SetPipe() {
// If SACK isn't permitted or it is permitted but recovery is not active
// then ignore pipe calculations.
if !s.ep.sackPermitted || !s.fr.active {
return
}
pipe := 0
smss := seqnum.Size(s.ep.scoreboard.SMSS())
for s1 := s.writeList.Front(); s1 != nil && s1.data.Size() != 0 && s.isAssignedSequenceNumber(s1); s1 = s1.Next() {
// With GSO each segment can be much larger than SMSS. So check the segment
// in SMSS sized ranges.
segEnd := s1.sequenceNumber.Add(seqnum.Size(s1.data.Size()))
for startSeq := s1.sequenceNumber; startSeq.LessThan(segEnd); startSeq = startSeq.Add(smss) {
endSeq := startSeq.Add(smss)
if segEnd.LessThan(endSeq) {
endSeq = segEnd
}
sb := header.SACKBlock{startSeq, endSeq}
// SetPipe():
//
// After initializing pipe to zero, the following steps are
// taken for each octet 'S1' in the sequence space between
// HighACK and HighData that has not been SACKed:
if !s1.sequenceNumber.LessThan(s.sndNxt) {
break
}
if s.ep.scoreboard.IsSACKED(sb) {
continue
}
// SetPipe():
//
// (a) If IsLost(S1) returns false, Pipe is incremened by 1.
//
// NOTE: here we mark the whole segment as lost. We do not try
// and test every byte in our write buffer as we maintain our
// pipe in terms of oustanding packets and not bytes.
if !s.ep.scoreboard.IsRangeLost(sb) {
pipe++
}
// SetPipe():
// (b) If S1 <= HighRxt, Pipe is incremented by 1.
if s1.sequenceNumber.LessThanEq(s.fr.highRxt) {
pipe++
}
}
}
s.outstanding = pipe
}
// checkDuplicateAck is called when an ack is received. It manages the state
// related to duplicate acks and determines if a retransmit is needed according
// to the rules in RFC 6582 (NewReno).
func (s *sender) checkDuplicateAck(seg *segment) (rtx bool) {
ack := seg.ackNumber
if s.fr.active {
return s.handleFastRecovery(seg)
}
// We're not in fast recovery yet. A segment is considered a duplicate
// only if it doesn't carry any data and doesn't update the send window,
// because if it does, it wasn't sent in response to an out-of-order
// segment. If SACK is enabled then we have an additional check to see
// if the segment carries new SACK information. If it does then it is
// considered a duplicate ACK as per RFC6675.
if ack != s.sndUna || seg.logicalLen() != 0 || s.sndWnd != seg.window || ack == s.sndNxt {
if !s.ep.sackPermitted || !seg.hasNewSACKInfo {
s.dupAckCount = 0
return false
}
}
s.dupAckCount++
// Do not enter fast recovery until we reach nDupAckThreshold or the
// first unacknowledged byte is considered lost as per SACK scoreboard.
if s.dupAckCount < nDupAckThreshold || (s.ep.sackPermitted && !s.ep.scoreboard.IsLost(s.sndUna)) {
// RFC 6675 Step 3.
s.fr.highRxt = s.sndUna - 1
// Do run SetPipe() to calculate the outstanding segments.
s.SetPipe()
return false
}
// See: https://tools.ietf.org/html/rfc6582#section-3.2 Step 2
//
// We only do the check here, the incrementing of last to the highest
// sequence number transmitted till now is done when enterFastRecovery
// is invoked.
if !s.fr.last.LessThan(seg.ackNumber) {
s.dupAckCount = 0
return false
}
s.cc.HandleNDupAcks()
s.enterFastRecovery()
s.dupAckCount = 0
return true
}
// handleRcvdSegment is called when a segment is received; it is responsible for
// updating the send-related state.
func (s *sender) handleRcvdSegment(seg *segment) {
// Check if we can extract an RTT measurement from this ack.
if !seg.parsedOptions.TS && s.rttMeasureSeqNum.LessThan(seg.ackNumber) {
s.updateRTO(time.Now().Sub(s.rttMeasureTime))
s.rttMeasureSeqNum = s.sndNxt
}
// Update Timestamp if required. See RFC7323, section-4.3.
if s.ep.sendTSOk && seg.parsedOptions.TS {
s.ep.updateRecentTimestamp(seg.parsedOptions.TSVal, s.maxSentAck, seg.sequenceNumber)
}
// Insert SACKBlock information into our scoreboard.
if s.ep.sackPermitted {
for _, sb := range seg.parsedOptions.SACKBlocks {
// Only insert the SACK block if the following holds
// true:
// * SACK block acks data after the ack number in the
// current segment.
// * SACK block represents a sequence
// between sndUna and sndNxt (i.e. data that is
// currently unacked and in-flight).
// * SACK block that has not been SACKed already.
//
// NOTE: This check specifically excludes DSACK blocks
// which have start/end before sndUna and are used to
// indicate spurious retransmissions.
if seg.ackNumber.LessThan(sb.Start) && s.sndUna.LessThan(sb.Start) && sb.End.LessThanEq(s.sndNxt) && !s.ep.scoreboard.IsSACKED(sb) {
s.ep.scoreboard.Insert(sb)
seg.hasNewSACKInfo = true
}
}
s.SetPipe()
}
// Count the duplicates and do the fast retransmit if needed.
rtx := s.checkDuplicateAck(seg)
// Stash away the current window size.
s.sndWnd = seg.window
// Ignore ack if it doesn't acknowledge any new data.
ack := seg.ackNumber
if (ack - 1).InRange(s.sndUna, s.sndNxt) {
s.dupAckCount = 0
// See : https://tools.ietf.org/html/rfc1323#section-3.3.
// Specifically we should only update the RTO using TSEcr if the
// following condition holds:
//
// A TSecr value received in a segment is used to update the
// averaged RTT measurement only if the segment acknowledges
// some new data, i.e., only if it advances the left edge of
// the send window.
if s.ep.sendTSOk && seg.parsedOptions.TSEcr != 0 {
// TSVal/Ecr values sent by Netstack are at a millisecond
// granularity.
elapsed := time.Duration(s.ep.timestamp()-seg.parsedOptions.TSEcr) * time.Millisecond
s.updateRTO(elapsed)
}
// When an ack is received we must rearm the timer.
// RFC 6298 5.2
s.resendTimer.enable(s.rto)
// Remove all acknowledged data from the write list.
acked := s.sndUna.Size(ack)
s.sndUna = ack
ackLeft := acked
originalOutstanding := s.outstanding
for ackLeft > 0 {
// We use logicalLen here because we can have FIN
// segments (which are always at the end of list) that
// have no data, but do consume a sequence number.
seg := s.writeList.Front()
datalen := seg.logicalLen()
if datalen > ackLeft {
prevCount := s.pCount(seg)
seg.data.TrimFront(int(ackLeft))
seg.sequenceNumber.UpdateForward(ackLeft)
s.outstanding -= prevCount - s.pCount(seg)
break
}
if s.writeNext == seg {
s.writeNext = seg.Next()
}
s.writeList.Remove(seg)
// if SACK is enabled then Only reduce outstanding if
// the segment was not previously SACKED as these have
// already been accounted for in SetPipe().
if !s.ep.sackPermitted || !s.ep.scoreboard.IsSACKED(seg.sackBlock()) {
s.outstanding -= s.pCount(seg)
}
seg.decRef()
ackLeft -= datalen
}
// Update the send buffer usage and notify potential waiters.
s.ep.updateSndBufferUsage(int(acked))
// Clear SACK information for all acked data.
s.ep.scoreboard.Delete(s.sndUna)
// If we are not in fast recovery then update the congestion
// window based on the number of acknowledged packets.
if !s.fr.active {
s.cc.Update(originalOutstanding - s.outstanding)
}
// It is possible for s.outstanding to drop below zero if we get
// a retransmit timeout, reset outstanding to zero but later
// get an ack that cover previously sent data.
if s.outstanding < 0 {
s.outstanding = 0
}
s.SetPipe()
// If all outstanding data was acknowledged the disable the timer.
// RFC 6298 Rule 5.3
if s.sndUna == s.sndNxt {
s.outstanding = 0
s.resendTimer.disable()
}
}
// Now that we've popped all acknowledged data from the retransmit
// queue, retransmit if needed.
if rtx {
s.resendSegment()
}
// Send more data now that some of the pending data has been ack'd, or
// that the window opened up, or the congestion window was inflated due
// to a duplicate ack during fast recovery. This will also re-enable
// the retransmit timer if needed.
if !s.ep.sackPermitted || s.fr.active || s.dupAckCount == 0 || seg.hasNewSACKInfo {
s.sendData()
}
}
// sendSegment sends the specified segment.
func (s *sender) sendSegment(seg *segment) *tcpip.Error {
if !seg.xmitTime.IsZero() {
s.ep.stack.Stats().TCP.Retransmits.Increment()
if s.sndCwnd < s.sndSsthresh {
s.ep.stack.Stats().TCP.SlowStartRetransmits.Increment()
}
}
seg.xmitTime = time.Now()
return s.sendSegmentFromView(seg.data, seg.flags, seg.sequenceNumber)
}
// sendSegmentFromView sends a new segment containing the given payload, flags
// and sequence number.
func (s *sender) sendSegmentFromView(data buffer.VectorisedView, flags byte, seq seqnum.Value) *tcpip.Error {
s.lastSendTime = time.Now()
if seq == s.rttMeasureSeqNum {
s.rttMeasureTime = s.lastSendTime
}
rcvNxt, rcvWnd := s.ep.rcv.getSendParams()
// Remember the max sent ack.
s.maxSentAck = rcvNxt
// Every time a packet containing data is sent (including a
// retransmission), if SACK is enabled then use the conservative timer
// described in RFC6675 Section 4.0, otherwise follow the standard time
// described in RFC6298 Section 5.2.
if data.Size() != 0 {
if s.ep.sackPermitted {
s.resendTimer.enable(s.rto)
} else {
if !s.resendTimer.enabled() {
s.resendTimer.enable(s.rto)
}
}
}
return s.ep.sendRaw(data, flags, seq, rcvNxt, rcvWnd)
}