gvisor/test/syscalls/linux/pipe.cc

483 lines
16 KiB
C++
Raw Normal View History

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fcntl.h> /* Obtain O_* constant definitions */
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <unistd.h>
#include <vector>
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Buffer size of a pipe.
//
// TODO(b/35762278): Get this from F_GETPIPE_SZ.
constexpr int kPipeSize = 65536;
class PipeTest : public ::testing::Test {
public:
static void SetUpTestCase() {
// Tests intentionally generate SIGPIPE.
TEST_PCHECK(signal(SIGPIPE, SIG_IGN) != SIG_ERR);
}
static void TearDownTestCase() {
TEST_PCHECK(signal(SIGPIPE, SIG_DFL) != SIG_ERR);
}
};
TEST_F(PipeTest, Basic) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int i = 0x12345678;
ASSERT_THAT(pipe(fds), SyscallSucceeds());
// Ensure that the inode number is the same for each end.
struct stat rst;
ASSERT_THAT(fstat(fds[0], &rst), SyscallSucceeds());
struct stat wst;
ASSERT_THAT(fstat(fds[1], &wst), SyscallSucceeds());
EXPECT_EQ(rst.st_ino, wst.st_ino);
ASSERT_THAT(write(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[1], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
int j;
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
EXPECT_EQ(i, j);
ASSERT_THAT(fcntl(fds[0], F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(fds[1], F_GETFL), SyscallSucceedsWithValue(O_WRONLY));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, BasicCloExec) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int i = 0x12345678;
ASSERT_THAT(pipe2(fds, O_CLOEXEC), SyscallSucceeds());
ASSERT_THAT(write(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[1], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
int j;
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
EXPECT_EQ(i, j);
ASSERT_THAT(fcntl(fds[0], F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(fds[1], F_GETFL), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, BasicNoBlock) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int i = 0x12345678;
ASSERT_THAT(pipe2(fds, O_NONBLOCK), SyscallSucceeds());
ASSERT_THAT(write(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[1], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
int j;
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
EXPECT_EQ(i, j);
ASSERT_THAT(read(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(fcntl(fds[0], F_GETFL), SyscallSucceedsWithValue(O_NONBLOCK));
ASSERT_THAT(fcntl(fds[1], F_GETFL),
SyscallSucceedsWithValue(O_NONBLOCK | O_WRONLY));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, BasicBothOptions) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int i = 0x12345678;
ASSERT_THAT(pipe2(fds, O_NONBLOCK | O_CLOEXEC), SyscallSucceeds());
ASSERT_THAT(write(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[1], &i, sizeof(i)), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(read(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
int j;
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
EXPECT_EQ(i, j);
ASSERT_THAT(read(fds[0], &i, sizeof(i)), SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(fcntl(fds[0], F_GETFL), SyscallSucceedsWithValue(O_NONBLOCK));
ASSERT_THAT(fcntl(fds[1], F_GETFL),
SyscallSucceedsWithValue(O_NONBLOCK | O_WRONLY));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, BasicBadOptions) {
int fds[2];
ASSERT_THAT(pipe2(fds, 0xDEAD), SyscallFailsWithErrno(EINVAL));
}
TEST_F(PipeTest, Seek) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int i = 0x12345678;
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(lseek(fds[0], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
int j;
ASSERT_THAT(lseek(fds[0], 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[0], 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(lseek(fds[1], 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
EXPECT_EQ(i, j);
ASSERT_THAT(fcntl(fds[0], F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(fds[1], F_GETFL), SyscallSucceedsWithValue(O_WRONLY));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, AbsoluteOffsetSyscallsFail) {
// Syscalls for IO at absolute offsets fail because pipes are not seekable.
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
std::vector<char> buf(4096);
struct iovec iov;
EXPECT_THAT(pread(fds[1], buf.data(), buf.size(), 0),
SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwrite(fds[0], buf.data(), buf.size(), 0),
SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(preadv(fds[1], &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwritev(fds[0], &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(close(fds[0]), SyscallSucceeds());
EXPECT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, WriterSideCloses) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int rfd = fds[0];
int i = 123;
ScopedThread t([rfd]() {
int j;
ASSERT_THAT(read(rfd, &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
// This will return when the close() completes.
ASSERT_THAT(read(rfd, &j, sizeof(j)), SyscallSucceeds());
// This will return straight away.
ASSERT_THAT(read(rfd, &j, sizeof(j)), SyscallSucceeds());
});
// Sleep a bit so the thread can block.
absl::SleepFor(absl::Seconds(1.0));
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
// Sleep a bit so the thread can block again.
absl::SleepFor(absl::Seconds(3.0));
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
t.Join();
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
}
TEST_F(PipeTest, WriterSideClosesReadDataFirst) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int i = 123;
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
int j;
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceedsWithValue(sizeof(j)));
ASSERT_EQ(j, i);
ASSERT_THAT(read(fds[0], &j, sizeof(j)), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
}
TEST_F(PipeTest, ReaderSideCloses) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
int i = 123;
ASSERT_THAT(write(fds[1], &i, sizeof(i)), SyscallFailsWithErrno(EPIPE));
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, CloseTwice) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(close(fds[1]), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
ASSERT_THAT(close(fds[0]), SyscallFailsWithErrno(EBADF));
ASSERT_THAT(close(fds[1]), SyscallFailsWithErrno(EBADF));
}
// Blocking write returns EPIPE when read end is closed if nothing has been
// written.
TEST_F(PipeTest, BlockWriteClosed) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int wfd = fds[1];
absl::Notification notify;
ScopedThread t([wfd, &notify]() {
std::vector<char> buf(kPipeSize);
// Exactly fill the pipe buffer.
ASSERT_THAT(WriteFd(wfd, buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
notify.Notify();
// Attempt to write one more byte. Blocks.
// N.B. Don't use WriteFd, we don't want a retry.
ASSERT_THAT(write(wfd, buf.data(), 1), SyscallFailsWithErrno(EPIPE));
});
notify.WaitForNotification();
absl::SleepFor(absl::Seconds(1.0));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
t.Join();
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
// Blocking write returns EPIPE when read end is closed even if something has
// been written.
//
// FIXME(b/35924046): Pipe writes blocking early allows S/R to interrupt the
// write(2) call before the buffer is full. Then the next call will will return
// non-zero instead of EPIPE.
TEST_F(PipeTest, BlockPartialWriteClosed_NoRandomSave) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int wfd = fds[1];
ScopedThread t([wfd]() {
std::vector<char> buf(2 * kPipeSize);
// Write more than fits in the buffer. Blocks then returns partial write
// when the other end is closed. The next call returns EPIPE.
if (IsRunningOnGvisor()) {
// FIXME(b/35924046): Pipe writes block early on gVisor, resulting in a
// shorter than expected partial write.
ASSERT_THAT(write(wfd, buf.data(), buf.size()),
SyscallSucceedsWithValue(::testing::Gt(0)));
} else {
ASSERT_THAT(write(wfd, buf.data(), buf.size()),
SyscallSucceedsWithValue(kPipeSize));
}
ASSERT_THAT(write(wfd, buf.data(), buf.size()),
SyscallFailsWithErrno(EPIPE));
});
// Leave time for write to become blocked.
absl::SleepFor(absl::Seconds(1.0));
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
t.Join();
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, ReadFromClosedFd_NoRandomSave) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int rfd = fds[0];
absl::Notification notify;
ScopedThread t([rfd, &notify]() {
int f;
notify.Notify();
ASSERT_THAT(read(rfd, &f, sizeof(f)), SyscallSucceedsWithValue(sizeof(f)));
ASSERT_EQ(123, f);
});
notify.WaitForNotification();
// Make sure that the thread gets to read().
absl::SleepFor(absl::Seconds(5.0));
{
// We cannot save/restore here as the read end of pipe is closed but there
// is ongoing read() above. We will not be able to restart the read()
// successfully in restore run since the read fd is closed.
const DisableSave ds;
ASSERT_THAT(close(fds[0]), SyscallSucceeds());
int i = 123;
ASSERT_THAT(write(fds[1], &i, sizeof(i)),
SyscallSucceedsWithValue(sizeof(i)));
t.Join();
}
ASSERT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST_F(PipeTest, FionRead) {
// fds[0] is read end, fds[1] is write end.
int fds[2];
int data[2] = {0x12345678, 0x9101112};
ASSERT_THAT(pipe(fds), SyscallSucceeds());
int n = -1;
EXPECT_THAT(ioctl(fds[0], FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
n = -1;
EXPECT_THAT(ioctl(fds[1], FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
EXPECT_THAT(write(fds[1], data, sizeof(data)),
SyscallSucceedsWithValue(sizeof(data)));
n = -1;
EXPECT_THAT(ioctl(fds[0], FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(data));
n = -1;
EXPECT_THAT(ioctl(fds[1], FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(data));
}
// Test that opening an empty anonymous pipe RDONLY via /proc/self/fd/N does not
// block waiting for a writer.
TEST_F(PipeTest, OpenViaProcSelfFD) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
FileDescriptor rfd(fds[0]);
FileDescriptor wfd(fds[1]);
// Close the write end of the pipe.
wfd.release();
// Open other side via /proc/self/fd. It should not block.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", fds[0]), O_RDONLY));
}
// Test that opening and reading from an anonymous pipe (with existing writes)
// RDONLY via /proc/self/fd/N returns the existing data.
TEST_F(PipeTest, OpenViaProcSelfFDWithWrites) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
FileDescriptor rfd(fds[0]);
FileDescriptor wfd(fds[1]);
// Write to the pipe and then close the write fd.
char data = 'x';
ASSERT_THAT(write(fds[1], &data, 1), SyscallSucceedsWithValue(1));
wfd.release();
// Open read side via /proc/self/fd, and read from it.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", fds[0]), O_RDONLY));
char got;
ASSERT_THAT(read(proc_self_fd.get(), &got, 1), SyscallSucceedsWithValue(1));
// We should get what we sent.
EXPECT_EQ(got, data);
}
TEST_F(PipeTest, LargeFile) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
FileDescriptor rfd(fds[0]);
FileDescriptor wfd(fds[1]);
int rflags;
EXPECT_THAT(rflags = fcntl(rfd.get(), F_GETFL), SyscallSucceeds());
// The kernel did *not* set O_LARGEFILE.
EXPECT_EQ(rflags, 0);
}
// Test that accesses of /proc/<PID>/fd/<FD> and /proc/<PID>/fdinfo/<FD>
// correctly decrement the refcount of that file descriptor.
TEST_F(PipeTest, ProcFDReleasesFile) {
std::vector<std::string> paths = {"/proc/self/fd/", "/proc/self/fdinfo/"};
for (const std::string& path : paths) {
int fds[2];
ASSERT_THAT(pipe(fds), SyscallSucceeds());
FileDescriptor rfd(fds[0]);
FileDescriptor wfd(fds[1]);
// Stat the pipe FD, which shouldn't alter the refcount of the write end of
// the pipe.
struct stat wst;
ASSERT_THAT(lstat(absl::StrCat(path.c_str(), wfd.get()).c_str(), &wst),
SyscallSucceeds());
// Close the write end of the pipe and ensure that read indicates EOF.
wfd.reset();
char buf;
ASSERT_THAT(read(rfd.get(), &buf, 1), SyscallSucceedsWithValue(0));
}
}
} // namespace
} // namespace testing
} // namespace gvisor