// Copyright 2019 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package proc import ( "bytes" "fmt" "io" "gvisor.dev/gvisor/pkg/abi/linux" "gvisor.dev/gvisor/pkg/context" "gvisor.dev/gvisor/pkg/safemem" "gvisor.dev/gvisor/pkg/sentry/fsimpl/kernfs" "gvisor.dev/gvisor/pkg/sentry/kernel" "gvisor.dev/gvisor/pkg/sentry/kernel/auth" "gvisor.dev/gvisor/pkg/sentry/limits" "gvisor.dev/gvisor/pkg/sentry/mm" "gvisor.dev/gvisor/pkg/sentry/usage" "gvisor.dev/gvisor/pkg/sentry/vfs" "gvisor.dev/gvisor/pkg/syserror" "gvisor.dev/gvisor/pkg/usermem" ) // mm gets the kernel task's MemoryManager. No additional reference is taken on // mm here. This is safe because MemoryManager.destroy is required to leave the // MemoryManager in a state where it's still usable as a DynamicBytesSource. func getMM(task *kernel.Task) *mm.MemoryManager { var tmm *mm.MemoryManager task.WithMuLocked(func(t *kernel.Task) { if mm := t.MemoryManager(); mm != nil { tmm = mm } }) return tmm } // getMMIncRef returns t's MemoryManager. If getMMIncRef succeeds, the // MemoryManager's users count is incremented, and must be decremented by the // caller when it is no longer in use. func getMMIncRef(task *kernel.Task) (*mm.MemoryManager, error) { if task.ExitState() == kernel.TaskExitDead { return nil, syserror.ESRCH } var m *mm.MemoryManager task.WithMuLocked(func(t *kernel.Task) { m = t.MemoryManager() }) if m == nil || !m.IncUsers() { return nil, io.EOF } return m, nil } type bufferWriter struct { buf *bytes.Buffer } // WriteFromBlocks writes up to srcs.NumBytes() bytes from srcs and returns // the number of bytes written. It may return a partial write without an // error (i.e. (n, nil) where 0 < n < srcs.NumBytes()). It should not // return a full write with an error (i.e. srcs.NumBytes(), err) where err // != nil). func (w *bufferWriter) WriteFromBlocks(srcs safemem.BlockSeq) (uint64, error) { written := srcs.NumBytes() for !srcs.IsEmpty() { w.buf.Write(srcs.Head().ToSlice()) srcs = srcs.Tail() } return written, nil } // auxvData implements vfs.DynamicBytesSource for /proc/[pid]/auxv. // // +stateify savable type auxvData struct { kernfs.DynamicBytesFile task *kernel.Task } var _ dynamicInode = (*auxvData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *auxvData) Generate(ctx context.Context, buf *bytes.Buffer) error { m, err := getMMIncRef(d.task) if err != nil { return err } defer m.DecUsers(ctx) // Space for buffer with AT_NULL (0) terminator at the end. auxv := m.Auxv() buf.Grow((len(auxv) + 1) * 16) for _, e := range auxv { var tmp [8]byte usermem.ByteOrder.PutUint64(tmp[:], e.Key) buf.Write(tmp[:]) usermem.ByteOrder.PutUint64(tmp[:], uint64(e.Value)) buf.Write(tmp[:]) } return nil } // execArgType enumerates the types of exec arguments that are exposed through // proc. type execArgType int const ( cmdlineDataArg execArgType = iota environDataArg ) // cmdlineData implements vfs.DynamicBytesSource for /proc/[pid]/cmdline. // // +stateify savable type cmdlineData struct { kernfs.DynamicBytesFile task *kernel.Task // arg is the type of exec argument this file contains. arg execArgType } var _ dynamicInode = (*cmdlineData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *cmdlineData) Generate(ctx context.Context, buf *bytes.Buffer) error { m, err := getMMIncRef(d.task) if err != nil { return err } defer m.DecUsers(ctx) // Figure out the bounds of the exec arg we are trying to read. var ar usermem.AddrRange switch d.arg { case cmdlineDataArg: ar = usermem.AddrRange{ Start: m.ArgvStart(), End: m.ArgvEnd(), } case environDataArg: ar = usermem.AddrRange{ Start: m.EnvvStart(), End: m.EnvvEnd(), } default: panic(fmt.Sprintf("unknown exec arg type %v", d.arg)) } if ar.Start == 0 || ar.End == 0 { // Don't attempt to read before the start/end are set up. return io.EOF } // N.B. Technically this should be usermem.IOOpts.IgnorePermissions = true // until Linux 4.9 (272ddc8b3735 "proc: don't use FOLL_FORCE for reading // cmdline and environment"). writer := &bufferWriter{buf: buf} if n, err := m.CopyInTo(ctx, usermem.AddrRangeSeqOf(ar), writer, usermem.IOOpts{}); n == 0 || err != nil { // Nothing to copy or something went wrong. return err } // On Linux, if the NULL byte at the end of the argument vector has been // overwritten, it continues reading the environment vector as part of // the argument vector. if d.arg == cmdlineDataArg && buf.Bytes()[buf.Len()-1] != 0 { if end := bytes.IndexByte(buf.Bytes(), 0); end != -1 { // If we found a NULL character somewhere else in argv, truncate the // return up to the NULL terminator (including it). buf.Truncate(end) return nil } // There is no NULL terminator in the string, return into envp. arEnvv := usermem.AddrRange{ Start: m.EnvvStart(), End: m.EnvvEnd(), } // Upstream limits the returned amount to one page of slop. // https://elixir.bootlin.com/linux/v4.20/source/fs/proc/base.c#L208 // we'll return one page total between argv and envp because of the // above page restrictions. if buf.Len() >= usermem.PageSize { // Returned at least one page already, nothing else to add. return nil } remaining := usermem.PageSize - buf.Len() if int(arEnvv.Length()) > remaining { end, ok := arEnvv.Start.AddLength(uint64(remaining)) if !ok { return syserror.EFAULT } arEnvv.End = end } if _, err := m.CopyInTo(ctx, usermem.AddrRangeSeqOf(arEnvv), writer, usermem.IOOpts{}); err != nil { return err } // Linux will return envp up to and including the first NULL character, // so find it. if end := bytes.IndexByte(buf.Bytes()[ar.Length():], 0); end != -1 { buf.Truncate(end) } } return nil } // +stateify savable type commInode struct { kernfs.DynamicBytesFile task *kernel.Task } func newComm(task *kernel.Task, ino uint64, perm linux.FileMode) *kernfs.Dentry { inode := &commInode{task: task} inode.DynamicBytesFile.Init(task.Credentials(), ino, &commData{task: task}, perm) d := &kernfs.Dentry{} d.Init(inode) return d } func (i *commInode) CheckPermissions(ctx context.Context, creds *auth.Credentials, ats vfs.AccessTypes) error { // This file can always be read or written by members of the same thread // group. See fs/proc/base.c:proc_tid_comm_permission. // // N.B. This check is currently a no-op as we don't yet support writing and // this file is world-readable anyways. t := kernel.TaskFromContext(ctx) if t != nil && t.ThreadGroup() == i.task.ThreadGroup() && !ats.MayExec() { return nil } return i.DynamicBytesFile.CheckPermissions(ctx, creds, ats) } // commData implements vfs.DynamicBytesSource for /proc/[pid]/comm. // // +stateify savable type commData struct { kernfs.DynamicBytesFile task *kernel.Task } var _ dynamicInode = (*commData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *commData) Generate(ctx context.Context, buf *bytes.Buffer) error { buf.WriteString(d.task.Name()) buf.WriteString("\n") return nil } // idMapData implements vfs.DynamicBytesSource for /proc/[pid]/{gid_map|uid_map}. // // +stateify savable type idMapData struct { kernfs.DynamicBytesFile task *kernel.Task gids bool } var _ dynamicInode = (*idMapData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *idMapData) Generate(ctx context.Context, buf *bytes.Buffer) error { var entries []auth.IDMapEntry if d.gids { entries = d.task.UserNamespace().GIDMap() } else { entries = d.task.UserNamespace().UIDMap() } for _, e := range entries { fmt.Fprintf(buf, "%10d %10d %10d\n", e.FirstID, e.FirstParentID, e.Length) } return nil } // mapsData implements vfs.DynamicBytesSource for /proc/[pid]/maps. // // +stateify savable type mapsData struct { kernfs.DynamicBytesFile task *kernel.Task } var _ dynamicInode = (*mapsData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *mapsData) Generate(ctx context.Context, buf *bytes.Buffer) error { if mm := getMM(d.task); mm != nil { mm.ReadMapsDataInto(ctx, buf) } return nil } // smapsData implements vfs.DynamicBytesSource for /proc/[pid]/smaps. // // +stateify savable type smapsData struct { kernfs.DynamicBytesFile task *kernel.Task } var _ dynamicInode = (*smapsData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (d *smapsData) Generate(ctx context.Context, buf *bytes.Buffer) error { if mm := getMM(d.task); mm != nil { mm.ReadSmapsDataInto(ctx, buf) } return nil } // +stateify savable type taskStatData struct { kernfs.DynamicBytesFile task *kernel.Task // If tgstats is true, accumulate fault stats (not implemented) and CPU // time across all tasks in t's thread group. tgstats bool // pidns is the PID namespace associated with the proc filesystem that // includes the file using this statData. pidns *kernel.PIDNamespace } var _ dynamicInode = (*taskStatData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (s *taskStatData) Generate(ctx context.Context, buf *bytes.Buffer) error { fmt.Fprintf(buf, "%d ", s.pidns.IDOfTask(s.task)) fmt.Fprintf(buf, "(%s) ", s.task.Name()) fmt.Fprintf(buf, "%c ", s.task.StateStatus()[0]) ppid := kernel.ThreadID(0) if parent := s.task.Parent(); parent != nil { ppid = s.pidns.IDOfThreadGroup(parent.ThreadGroup()) } fmt.Fprintf(buf, "%d ", ppid) fmt.Fprintf(buf, "%d ", s.pidns.IDOfProcessGroup(s.task.ThreadGroup().ProcessGroup())) fmt.Fprintf(buf, "%d ", s.pidns.IDOfSession(s.task.ThreadGroup().Session())) fmt.Fprintf(buf, "0 0 " /* tty_nr tpgid */) fmt.Fprintf(buf, "0 " /* flags */) fmt.Fprintf(buf, "0 0 0 0 " /* minflt cminflt majflt cmajflt */) var cputime usage.CPUStats if s.tgstats { cputime = s.task.ThreadGroup().CPUStats() } else { cputime = s.task.CPUStats() } fmt.Fprintf(buf, "%d %d ", linux.ClockTFromDuration(cputime.UserTime), linux.ClockTFromDuration(cputime.SysTime)) cputime = s.task.ThreadGroup().JoinedChildCPUStats() fmt.Fprintf(buf, "%d %d ", linux.ClockTFromDuration(cputime.UserTime), linux.ClockTFromDuration(cputime.SysTime)) fmt.Fprintf(buf, "%d %d ", s.task.Priority(), s.task.Niceness()) fmt.Fprintf(buf, "%d ", s.task.ThreadGroup().Count()) // itrealvalue. Since kernel 2.6.17, this field is no longer // maintained, and is hard coded as 0. fmt.Fprintf(buf, "0 ") // Start time is relative to boot time, expressed in clock ticks. fmt.Fprintf(buf, "%d ", linux.ClockTFromDuration(s.task.StartTime().Sub(s.task.Kernel().Timekeeper().BootTime()))) var vss, rss uint64 s.task.WithMuLocked(func(t *kernel.Task) { if mm := t.MemoryManager(); mm != nil { vss = mm.VirtualMemorySize() rss = mm.ResidentSetSize() } }) fmt.Fprintf(buf, "%d %d ", vss, rss/usermem.PageSize) // rsslim. fmt.Fprintf(buf, "%d ", s.task.ThreadGroup().Limits().Get(limits.Rss).Cur) fmt.Fprintf(buf, "0 0 0 0 0 " /* startcode endcode startstack kstkesp kstkeip */) fmt.Fprintf(buf, "0 0 0 0 0 " /* signal blocked sigignore sigcatch wchan */) fmt.Fprintf(buf, "0 0 " /* nswap cnswap */) terminationSignal := linux.Signal(0) if s.task == s.task.ThreadGroup().Leader() { terminationSignal = s.task.ThreadGroup().TerminationSignal() } fmt.Fprintf(buf, "%d ", terminationSignal) fmt.Fprintf(buf, "0 0 0 " /* processor rt_priority policy */) fmt.Fprintf(buf, "0 0 0 " /* delayacct_blkio_ticks guest_time cguest_time */) fmt.Fprintf(buf, "0 0 0 0 0 0 0 " /* start_data end_data start_brk arg_start arg_end env_start env_end */) fmt.Fprintf(buf, "0\n" /* exit_code */) return nil } // statmData implements vfs.DynamicBytesSource for /proc/[pid]/statm. // // +stateify savable type statmData struct { kernfs.DynamicBytesFile task *kernel.Task } var _ dynamicInode = (*statmData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (s *statmData) Generate(ctx context.Context, buf *bytes.Buffer) error { var vss, rss uint64 s.task.WithMuLocked(func(t *kernel.Task) { if mm := t.MemoryManager(); mm != nil { vss = mm.VirtualMemorySize() rss = mm.ResidentSetSize() } }) fmt.Fprintf(buf, "%d %d 0 0 0 0 0\n", vss/usermem.PageSize, rss/usermem.PageSize) return nil } // statusData implements vfs.DynamicBytesSource for /proc/[pid]/status. // // +stateify savable type statusData struct { kernfs.DynamicBytesFile task *kernel.Task pidns *kernel.PIDNamespace } var _ dynamicInode = (*statusData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (s *statusData) Generate(ctx context.Context, buf *bytes.Buffer) error { fmt.Fprintf(buf, "Name:\t%s\n", s.task.Name()) fmt.Fprintf(buf, "State:\t%s\n", s.task.StateStatus()) fmt.Fprintf(buf, "Tgid:\t%d\n", s.pidns.IDOfThreadGroup(s.task.ThreadGroup())) fmt.Fprintf(buf, "Pid:\t%d\n", s.pidns.IDOfTask(s.task)) ppid := kernel.ThreadID(0) if parent := s.task.Parent(); parent != nil { ppid = s.pidns.IDOfThreadGroup(parent.ThreadGroup()) } fmt.Fprintf(buf, "PPid:\t%d\n", ppid) tpid := kernel.ThreadID(0) if tracer := s.task.Tracer(); tracer != nil { tpid = s.pidns.IDOfTask(tracer) } fmt.Fprintf(buf, "TracerPid:\t%d\n", tpid) var fds int var vss, rss, data uint64 s.task.WithMuLocked(func(t *kernel.Task) { if fdTable := t.FDTable(); fdTable != nil { fds = fdTable.Size() } if mm := t.MemoryManager(); mm != nil { vss = mm.VirtualMemorySize() rss = mm.ResidentSetSize() data = mm.VirtualDataSize() } }) fmt.Fprintf(buf, "FDSize:\t%d\n", fds) fmt.Fprintf(buf, "VmSize:\t%d kB\n", vss>>10) fmt.Fprintf(buf, "VmRSS:\t%d kB\n", rss>>10) fmt.Fprintf(buf, "VmData:\t%d kB\n", data>>10) fmt.Fprintf(buf, "Threads:\t%d\n", s.task.ThreadGroup().Count()) creds := s.task.Credentials() fmt.Fprintf(buf, "CapInh:\t%016x\n", creds.InheritableCaps) fmt.Fprintf(buf, "CapPrm:\t%016x\n", creds.PermittedCaps) fmt.Fprintf(buf, "CapEff:\t%016x\n", creds.EffectiveCaps) fmt.Fprintf(buf, "CapBnd:\t%016x\n", creds.BoundingCaps) fmt.Fprintf(buf, "Seccomp:\t%d\n", s.task.SeccompMode()) // We unconditionally report a single NUMA node. See // pkg/sentry/syscalls/linux/sys_mempolicy.go. fmt.Fprintf(buf, "Mems_allowed:\t1\n") fmt.Fprintf(buf, "Mems_allowed_list:\t0\n") return nil } // ioUsage is the /proc//io and /proc//task//io data provider. type ioUsage interface { // IOUsage returns the io usage data. IOUsage() *usage.IO } // +stateify savable type ioData struct { kernfs.DynamicBytesFile ioUsage } var _ dynamicInode = (*ioData)(nil) // Generate implements vfs.DynamicBytesSource.Generate. func (i *ioData) Generate(ctx context.Context, buf *bytes.Buffer) error { io := usage.IO{} io.Accumulate(i.IOUsage()) fmt.Fprintf(buf, "char: %d\n", io.CharsRead) fmt.Fprintf(buf, "wchar: %d\n", io.CharsWritten) fmt.Fprintf(buf, "syscr: %d\n", io.ReadSyscalls) fmt.Fprintf(buf, "syscw: %d\n", io.WriteSyscalls) fmt.Fprintf(buf, "read_bytes: %d\n", io.BytesRead) fmt.Fprintf(buf, "write_bytes: %d\n", io.BytesWritten) fmt.Fprintf(buf, "cancelled_write_bytes: %d\n", io.BytesWriteCancelled) return nil }