// Copyright 2018 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // +build amd64 package kvm import ( "fmt" "reflect" "runtime/debug" "syscall" "gvisor.googlesource.com/gvisor/pkg/sentry/arch" "gvisor.googlesource.com/gvisor/pkg/sentry/platform" "gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0" "gvisor.googlesource.com/gvisor/pkg/sentry/platform/ring0/pagetables" "gvisor.googlesource.com/gvisor/pkg/sentry/usermem" ) // initArchState initializes architecture-specific state. func (m *machine) initArchState() error { // Set the legacy TSS address. This address is covered by the reserved // range (up to 4GB). In fact, this is a main reason it exists. if _, _, errno := syscall.RawSyscall( syscall.SYS_IOCTL, uintptr(m.fd), _KVM_SET_TSS_ADDR, uintptr(reservedMemory-(3*usermem.PageSize))); errno != 0 { return errno } // Enable CPUID faulting, if possible. Note that this also serves as a // basic platform sanity tests, since we will enter guest mode for the // first time here. The recovery is necessary, since if we fail to read // the platform info register, we will retry to host mode and // ultimately need to handle a segmentation fault. old := debug.SetPanicOnFault(true) defer func() { recover() debug.SetPanicOnFault(old) }() m.retryInGuest(func() { ring0.SetCPUIDFaulting(true) }) return nil } type vCPUArchState struct { // PCIDs is the set of PCIDs for this vCPU. // // This starts above fixedKernelPCID. PCIDs *pagetables.PCIDs // floatingPointState is the floating point state buffer used in guest // to host transitions. See usage in bluepill_amd64.go. floatingPointState *arch.FloatingPointData } const ( // fixedKernelPCID is a fixed kernel PCID used for the kernel page // tables. We must start allocating user PCIDs above this in order to // avoid any conflict (see below). fixedKernelPCID = 1 // poolPCIDs is the number of PCIDs to record in the database. As this // grows, assignment can take longer, since it is a simple linear scan. // Beyond a relatively small number, there are likely few perform // benefits, since the TLB has likely long since lost any translations // from more than a few PCIDs past. poolPCIDs = 8 ) // dropPageTables drops cached page table entries. func (m *machine) dropPageTables(pt *pagetables.PageTables) { m.mu.Lock() defer m.mu.Unlock() // Clear from all PCIDs. for _, c := range m.vCPUs { c.PCIDs.Drop(pt) } } // initArchState initializes architecture-specific state. func (c *vCPU) initArchState() error { var ( kernelSystemRegs systemRegs kernelUserRegs userRegs ) // Set base control registers. kernelSystemRegs.CR0 = c.CR0() kernelSystemRegs.CR4 = c.CR4() kernelSystemRegs.EFER = c.EFER() // Set the IDT & GDT in the registers. kernelSystemRegs.IDT.base, kernelSystemRegs.IDT.limit = c.IDT() kernelSystemRegs.GDT.base, kernelSystemRegs.GDT.limit = c.GDT() kernelSystemRegs.CS.Load(&ring0.KernelCodeSegment, ring0.Kcode) kernelSystemRegs.DS.Load(&ring0.UserDataSegment, ring0.Udata) kernelSystemRegs.ES.Load(&ring0.UserDataSegment, ring0.Udata) kernelSystemRegs.SS.Load(&ring0.KernelDataSegment, ring0.Kdata) kernelSystemRegs.FS.Load(&ring0.UserDataSegment, ring0.Udata) kernelSystemRegs.GS.Load(&ring0.UserDataSegment, ring0.Udata) tssBase, tssLimit, tss := c.TSS() kernelSystemRegs.TR.Load(tss, ring0.Tss) kernelSystemRegs.TR.base = tssBase kernelSystemRegs.TR.limit = uint32(tssLimit) // Point to kernel page tables, with no initial PCID. kernelSystemRegs.CR3 = c.machine.kernel.PageTables.CR3(false, 0) // Initialize the PCID database. if hasGuestPCID { // Note that NewPCIDs may return a nil table here, in which // case we simply don't use PCID support (see below). In // practice, this should not happen, however. c.PCIDs = pagetables.NewPCIDs(fixedKernelPCID+1, poolPCIDs) } // Set the CPUID; this is required before setting system registers, // since KVM will reject several CR4 bits if the CPUID does not // indicate the support is available. if err := c.setCPUID(); err != nil { return err } // Set the entrypoint for the kernel. kernelUserRegs.RIP = uint64(reflect.ValueOf(ring0.Start).Pointer()) kernelUserRegs.RAX = uint64(reflect.ValueOf(&c.CPU).Pointer()) kernelUserRegs.RFLAGS = ring0.KernelFlagsSet // Set the system registers. if err := c.setSystemRegisters(&kernelSystemRegs); err != nil { return err } // Set the user registers. if err := c.setUserRegisters(&kernelUserRegs); err != nil { return err } // Allocate some floating point state save area for the local vCPU. // This will be saved prior to leaving the guest, and we restore from // this always. We cannot use the pointer in the context alone because // we don't know how large the area there is in reality. c.floatingPointState = arch.NewFloatingPointData() // Set the time offset to the host native time. return c.setSystemTime() } // nonCanonical generates a canonical address return. // //go:nosplit func nonCanonical(addr uint64, signal int32, info *arch.SignalInfo) (usermem.AccessType, error) { *info = arch.SignalInfo{ Signo: signal, Code: arch.SignalInfoKernel, } info.SetAddr(addr) // Include address. return usermem.NoAccess, platform.ErrContextSignal } // fault generates an appropriate fault return. // //go:nosplit func (c *vCPU) fault(signal int32, info *arch.SignalInfo) (usermem.AccessType, error) { bluepill(c) // Probably no-op, but may not be. faultAddr := ring0.ReadCR2() code, user := c.ErrorCode() if !user { // The last fault serviced by this CPU was not a user // fault, so we can't reliably trust the faultAddr or // the code provided here. We need to re-execute. return usermem.NoAccess, platform.ErrContextInterrupt } // Reset the pointed SignalInfo. *info = arch.SignalInfo{Signo: signal} info.SetAddr(uint64(faultAddr)) accessType := usermem.AccessType{ Read: code&(1<<1) == 0, Write: code&(1<<1) != 0, Execute: code&(1<<4) != 0, } if !accessType.Write && !accessType.Execute { info.Code = 1 // SEGV_MAPERR. } else { info.Code = 2 // SEGV_ACCERR. } return accessType, platform.ErrContextSignal } // SwitchToUser unpacks architectural-details. func (c *vCPU) SwitchToUser(switchOpts ring0.SwitchOpts, info *arch.SignalInfo) (usermem.AccessType, error) { // Check for canonical addresses. if regs := switchOpts.Registers; !ring0.IsCanonical(regs.Rip) { return nonCanonical(regs.Rip, int32(syscall.SIGSEGV), info) } else if !ring0.IsCanonical(regs.Rsp) { return nonCanonical(regs.Rsp, int32(syscall.SIGBUS), info) } else if !ring0.IsCanonical(regs.Fs_base) { return nonCanonical(regs.Fs_base, int32(syscall.SIGBUS), info) } else if !ring0.IsCanonical(regs.Gs_base) { return nonCanonical(regs.Gs_base, int32(syscall.SIGBUS), info) } // Assign PCIDs. if c.PCIDs != nil { var requireFlushPCID bool // Force a flush? switchOpts.UserPCID, requireFlushPCID = c.PCIDs.Assign(switchOpts.PageTables) switchOpts.KernelPCID = fixedKernelPCID switchOpts.Flush = switchOpts.Flush || requireFlushPCID } // See below. var vector ring0.Vector // Past this point, stack growth can cause system calls (and a break // from guest mode). So we need to ensure that between the bluepill // call here and the switch call immediately below, no additional // allocations occur. entersyscall() bluepill(c) vector = c.CPU.SwitchToUser(switchOpts) exitsyscall() switch vector { case ring0.Syscall, ring0.SyscallInt80: // Fast path: system call executed. return usermem.NoAccess, nil case ring0.PageFault: return c.fault(int32(syscall.SIGSEGV), info) case ring0.Debug, ring0.Breakpoint: *info = arch.SignalInfo{ Signo: int32(syscall.SIGTRAP), Code: 1, // TRAP_BRKPT (breakpoint). } info.SetAddr(switchOpts.Registers.Rip) // Include address. return usermem.AccessType{}, platform.ErrContextSignal case ring0.GeneralProtectionFault, ring0.SegmentNotPresent, ring0.BoundRangeExceeded, ring0.InvalidTSS, ring0.StackSegmentFault: *info = arch.SignalInfo{ Signo: int32(syscall.SIGSEGV), Code: arch.SignalInfoKernel, } info.SetAddr(switchOpts.Registers.Rip) // Include address. if vector == ring0.GeneralProtectionFault { // When CPUID faulting is enabled, we will generate a #GP(0) when // userspace executes a CPUID instruction. This is handled above, // because we need to be able to map and read user memory. return usermem.AccessType{}, platform.ErrContextSignalCPUID } return usermem.AccessType{}, platform.ErrContextSignal case ring0.InvalidOpcode: *info = arch.SignalInfo{ Signo: int32(syscall.SIGILL), Code: 1, // ILL_ILLOPC (illegal opcode). } info.SetAddr(switchOpts.Registers.Rip) // Include address. return usermem.AccessType{}, platform.ErrContextSignal case ring0.DivideByZero: *info = arch.SignalInfo{ Signo: int32(syscall.SIGFPE), Code: 1, // FPE_INTDIV (divide by zero). } info.SetAddr(switchOpts.Registers.Rip) // Include address. return usermem.AccessType{}, platform.ErrContextSignal case ring0.Overflow: *info = arch.SignalInfo{ Signo: int32(syscall.SIGFPE), Code: 2, // FPE_INTOVF (integer overflow). } info.SetAddr(switchOpts.Registers.Rip) // Include address. return usermem.AccessType{}, platform.ErrContextSignal case ring0.X87FloatingPointException, ring0.SIMDFloatingPointException: *info = arch.SignalInfo{ Signo: int32(syscall.SIGFPE), Code: 7, // FPE_FLTINV (invalid operation). } info.SetAddr(switchOpts.Registers.Rip) // Include address. return usermem.AccessType{}, platform.ErrContextSignal case ring0.Vector(bounce): // ring0.VirtualizationException return usermem.NoAccess, platform.ErrContextInterrupt case ring0.AlignmentCheck: *info = arch.SignalInfo{ Signo: int32(syscall.SIGBUS), Code: 2, // BUS_ADRERR (physical address does not exist). } return usermem.NoAccess, platform.ErrContextSignal case ring0.NMI: // An NMI is generated only when a fault is not servicable by // KVM itself, so we think some mapping is writeable but it's // really not. This could happen, e.g. if some file is // truncated (and would generate a SIGBUS) and we map it // directly into the instance. return c.fault(int32(syscall.SIGBUS), info) case ring0.DeviceNotAvailable, ring0.DoubleFault, ring0.CoprocessorSegmentOverrun, ring0.MachineCheck, ring0.SecurityException: fallthrough default: panic(fmt.Sprintf("unexpected vector: 0x%x", vector)) } } // retryInGuest runs the given function in guest mode. // // If the function does not complete in guest mode (due to execution of a // system call due to a GC stall, for example), then it will be retried. The // given function must be idempotent as a result of the retry mechanism. func (m *machine) retryInGuest(fn func()) { c := m.Get() defer m.Put(c) for { c.ClearErrorCode() // See below. bluepill(c) // Force guest mode. fn() // Execute the given function. _, user := c.ErrorCode() if user { // If user is set, then we haven't bailed back to host // mode via a kernel exception or system call. We // consider the full function to have executed in guest // mode and we can return. break } } }