// Copyright 2018 The gVisor Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Stateify provides a simple way to generate Load/Save methods based on // existing types and struct tags. package main import ( "flag" "fmt" "go/ast" "go/parser" "go/token" "os" "reflect" "strings" "sync" ) var ( pkg = flag.String("pkg", "", "output package") imports = flag.String("imports", "", "extra imports for the output file") output = flag.String("output", "", "output file") statePkg = flag.String("statepkg", "", "state import package; defaults to empty") ) // resolveTypeName returns a qualified type name. func resolveTypeName(name string, typ ast.Expr) (field string, qualified string) { for done := false; !done; { // Resolve star expressions. switch rs := typ.(type) { case *ast.StarExpr: qualified += "*" typ = rs.X case *ast.ArrayType: if rs.Len == nil { // Slice type declaration. qualified += "[]" } else { // Array type declaration. qualified += "[" + rs.Len.(*ast.BasicLit).Value + "]" } typ = rs.Elt default: // No more descent. done = true } } // Resolve a package selector. sel, ok := typ.(*ast.SelectorExpr) if ok { qualified = qualified + sel.X.(*ast.Ident).Name + "." typ = sel.Sel } // Figure out actual type name. ident, ok := typ.(*ast.Ident) if !ok { panic(fmt.Sprintf("type not supported: %s (involves anonymous types?)", name)) } field = ident.Name qualified = qualified + field return } // extractStateTag pulls the relevant state tag. func extractStateTag(tag *ast.BasicLit) string { if tag == nil { return "" } if len(tag.Value) < 2 { return "" } return reflect.StructTag(tag.Value[1 : len(tag.Value)-1]).Get("state") } // scanFunctions is a set of functions passed to scanFields. type scanFunctions struct { zerovalue func(name string) normal func(name string) wait func(name string) value func(name, typName string) } // scanFields scans the fields of a struct. // // Each provided function will be applied to appropriately tagged fields, or // skipped if nil. // // Fields tagged nosave are skipped. func scanFields(ss *ast.StructType, fn scanFunctions) { if ss.Fields.List == nil { // No fields. return } // Scan all fields. for _, field := range ss.Fields.List { // Calculate the name. name := "" if field.Names != nil { // It's a named field; override. name = field.Names[0].Name } else { // Anonymous types can't be embedded, so we don't need // to worry about providing a useful name here. name, _ = resolveTypeName("", field.Type) } // Skip _ fields. if name == "_" { continue } switch tag := extractStateTag(field.Tag); tag { case "zerovalue": if fn.zerovalue != nil { fn.zerovalue(name) } case "": if fn.normal != nil { fn.normal(name) } case "wait": if fn.wait != nil { fn.wait(name) } case "manual", "nosave", "ignore": // Do nothing. default: if strings.HasPrefix(tag, ".(") && strings.HasSuffix(tag, ")") { if fn.value != nil { fn.value(name, tag[2:len(tag)-1]) } } } } } func camelCased(name string) string { return strings.ToUpper(name[:1]) + name[1:] } func main() { // Parse flags. flag.Usage = func() { fmt.Fprintf(os.Stderr, "Usage: %s [options]\n", os.Args[0]) flag.PrintDefaults() } flag.Parse() if len(flag.Args()) == 0 { flag.Usage() os.Exit(1) } if *pkg == "" { fmt.Fprintf(os.Stderr, "Error: package required.") os.Exit(1) } // Open the output file. var ( outputFile *os.File err error ) if *output == "" || *output == "-" { outputFile = os.Stdout } else { outputFile, err = os.OpenFile(*output, os.O_CREATE|os.O_WRONLY|os.O_TRUNC, 0644) if err != nil { fmt.Fprintf(os.Stderr, "Error opening output %q: %v", *output, err) } defer outputFile.Close() } // Set the statePrefix for below, depending on the import. statePrefix := "" if *statePkg != "" { parts := strings.Split(*statePkg, "/") statePrefix = parts[len(parts)-1] + "." } // initCalls is dumped at the end. var initCalls []string // Declare our emission closures. emitRegister := func(name string) { initCalls = append(initCalls, fmt.Sprintf("%sRegister(\"%s.%s\", (*%s)(nil), state.Fns{Save: (*%s).save, Load: (*%s).load})", statePrefix, *pkg, name, name, name, name)) } emitZeroCheck := func(name string) { fmt.Fprintf(outputFile, " if !%sIsZeroValue(x.%s) { m.Failf(\"%s is %%v, expected zero\", x.%s) }\n", statePrefix, name, name, name) } emitLoadValue := func(name, typName string) { fmt.Fprintf(outputFile, " m.LoadValue(\"%s\", new(%s), func(y interface{}) { x.load%s(y.(%s)) })\n", name, typName, camelCased(name), typName) } emitLoad := func(name string) { fmt.Fprintf(outputFile, " m.Load(\"%s\", &x.%s)\n", name, name) } emitLoadWait := func(name string) { fmt.Fprintf(outputFile, " m.LoadWait(\"%s\", &x.%s)\n", name, name) } emitSaveValue := func(name, typName string) { fmt.Fprintf(outputFile, " var %s %s = x.save%s()\n", name, typName, camelCased(name)) fmt.Fprintf(outputFile, " m.SaveValue(\"%s\", %s)\n", name, name) } emitSave := func(name string) { fmt.Fprintf(outputFile, " m.Save(\"%s\", &x.%s)\n", name, name) } // Emit the package name. fmt.Fprint(outputFile, "// automatically generated by stateify.\n\n") fmt.Fprintf(outputFile, "package %s\n\n", *pkg) // Emit the imports lazily. var once sync.Once maybeEmitImports := func() { once.Do(func() { // Emit the imports. fmt.Fprint(outputFile, "import (\n") if *statePkg != "" { fmt.Fprintf(outputFile, " \"%s\"\n", *statePkg) } if *imports != "" { for _, i := range strings.Split(*imports, ",") { fmt.Fprintf(outputFile, " \"%s\"\n", i) } } fmt.Fprint(outputFile, ")\n\n") }) } files := make([]*ast.File, 0, len(flag.Args())) // Parse the input files. for _, filename := range flag.Args() { // Parse the file. fset := token.NewFileSet() f, err := parser.ParseFile(fset, filename, nil, parser.ParseComments) if err != nil { // Not a valid input file? fmt.Fprintf(os.Stderr, "Input %q can't be parsed: %v\n", filename, err) os.Exit(1) } files = append(files, f) } type method struct { receiver string name string } // Search for and add all methods with a pointer receiver and no other // arguments to a set. We support auto-detecting the existence of // several different methods with this signature. simpleMethods := map[method]struct{}{} for _, f := range files { // Go over all functions. for _, decl := range f.Decls { d, ok := decl.(*ast.FuncDecl) if !ok { continue } if d.Name == nil || d.Recv == nil || d.Type == nil { // Not a named method. continue } if len(d.Recv.List) != 1 { // Wrong number of receivers? continue } if d.Type.Params != nil && len(d.Type.Params.List) != 0 { // Has argument(s). continue } if d.Type.Results != nil && len(d.Type.Results.List) != 0 { // Has return(s). continue } pt, ok := d.Recv.List[0].Type.(*ast.StarExpr) if !ok { // Not a pointer receiver. continue } t, ok := pt.X.(*ast.Ident) if !ok { // This shouldn't happen with valid Go. continue } simpleMethods[method{t.Name, d.Name.Name}] = struct{}{} } } for _, f := range files { // Go over all named types. for _, decl := range f.Decls { d, ok := decl.(*ast.GenDecl) if !ok || d.Tok != token.TYPE { continue } // Only generate code for types marked // "// +stateify savable" in one of the proceeding // comment lines. if d.Doc == nil { continue } savable := false for _, l := range d.Doc.List { if l.Text == "// +stateify savable" { savable = true break } } if !savable { continue } for _, gs := range d.Specs { ts := gs.(*ast.TypeSpec) switch ts.Type.(type) { case *ast.InterfaceType, *ast.ChanType, *ast.FuncType, *ast.ParenExpr, *ast.StarExpr: // Don't register. break case *ast.StructType: maybeEmitImports() ss := ts.Type.(*ast.StructType) // Define beforeSave if a definition was not found. This // prevents the code from compiling if a custom beforeSave // was defined in a file not provided to this binary and // prevents inherited methods from being called multiple times // by overriding them. if _, ok := simpleMethods[method{ts.Name.Name, "beforeSave"}]; !ok { fmt.Fprintf(outputFile, "func (x *%s) beforeSave() {}\n", ts.Name.Name) } // Generate the save method. fmt.Fprintf(outputFile, "func (x *%s) save(m %sMap) {\n", ts.Name.Name, statePrefix) fmt.Fprintf(outputFile, " x.beforeSave()\n") scanFields(ss, scanFunctions{zerovalue: emitZeroCheck}) scanFields(ss, scanFunctions{value: emitSaveValue}) scanFields(ss, scanFunctions{normal: emitSave, wait: emitSave}) fmt.Fprintf(outputFile, "}\n\n") // Define afterLoad if a definition was not found. We do this // for the same reason that we do it for beforeSave. _, hasAfterLoad := simpleMethods[method{ts.Name.Name, "afterLoad"}] if !hasAfterLoad { fmt.Fprintf(outputFile, "func (x *%s) afterLoad() {}\n", ts.Name.Name) } // Generate the load method. // // Note that the manual loads always follow the // automated loads. fmt.Fprintf(outputFile, "func (x *%s) load(m %sMap) {\n", ts.Name.Name, statePrefix) scanFields(ss, scanFunctions{normal: emitLoad, wait: emitLoadWait}) scanFields(ss, scanFunctions{value: emitLoadValue}) if hasAfterLoad { // The call to afterLoad is made conditionally, because when // AfterLoad is called, the object encodes a dependency on // referred objects (i.e. fields). This means that afterLoad // will not be called until the other afterLoads are called. fmt.Fprintf(outputFile, " m.AfterLoad(x.afterLoad)\n") } fmt.Fprintf(outputFile, "}\n\n") // Add to our registration. emitRegister(ts.Name.Name) case *ast.Ident, *ast.SelectorExpr, *ast.ArrayType: maybeEmitImports() _, val := resolveTypeName(ts.Name.Name, ts.Type) // Dispatch directly. fmt.Fprintf(outputFile, "func (x *%s) save(m %sMap) {\n", ts.Name.Name, statePrefix) fmt.Fprintf(outputFile, " m.SaveValue(\"\", (%s)(*x))\n", val) fmt.Fprintf(outputFile, "}\n\n") fmt.Fprintf(outputFile, "func (x *%s) load(m %sMap) {\n", ts.Name.Name, statePrefix) fmt.Fprintf(outputFile, " m.LoadValue(\"\", new(%s), func(y interface{}) { *x = (%s)(y.(%s)) })\n", val, ts.Name.Name, val) fmt.Fprintf(outputFile, "}\n\n") // See above. emitRegister(ts.Name.Name) } } } } if len(initCalls) > 0 { // Emit the init() function. fmt.Fprintf(outputFile, "func init() {\n") for _, ic := range initCalls { fmt.Fprintf(outputFile, " %s\n", ic) } fmt.Fprintf(outputFile, "}\n") } }