gvisor/pkg/sentry/syscalls/linux/sys_mmap.go

442 lines
14 KiB
Go

// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package linux
import (
"bytes"
"gvisor.googlesource.com/gvisor/pkg/abi/linux"
"gvisor.googlesource.com/gvisor/pkg/sentry/arch"
"gvisor.googlesource.com/gvisor/pkg/sentry/kernel"
"gvisor.googlesource.com/gvisor/pkg/sentry/kernel/kdefs"
"gvisor.googlesource.com/gvisor/pkg/sentry/memmap"
"gvisor.googlesource.com/gvisor/pkg/sentry/mm"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// Brk implements linux syscall brk(2).
func Brk(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr, _ := t.MemoryManager().Brk(t, args[0].Pointer())
// "However, the actual Linux system call returns the new program break on
// success. On failure, the system call returns the current break." -
// brk(2)
return uintptr(addr), nil, nil
}
// Mmap implements linux syscall mmap(2).
func Mmap(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
prot := args[2].Int()
flags := args[3].Int()
fd := kdefs.FD(args[4].Int())
fixed := flags&linux.MAP_FIXED != 0
private := flags&linux.MAP_PRIVATE != 0
shared := flags&linux.MAP_SHARED != 0
anon := flags&linux.MAP_ANONYMOUS != 0
map32bit := flags&linux.MAP_32BIT != 0
// Require exactly one of MAP_PRIVATE and MAP_SHARED.
if private == shared {
return 0, nil, syserror.EINVAL
}
opts := memmap.MMapOpts{
Length: args[1].Uint64(),
Offset: args[5].Uint64(),
Addr: args[0].Pointer(),
Fixed: fixed,
Unmap: fixed,
Map32Bit: map32bit,
Private: private,
Perms: usermem.AccessType{
Read: linux.PROT_READ&prot != 0,
Write: linux.PROT_WRITE&prot != 0,
Execute: linux.PROT_EXEC&prot != 0,
},
MaxPerms: usermem.AnyAccess,
GrowsDown: linux.MAP_GROWSDOWN&flags != 0,
Precommit: linux.MAP_POPULATE&flags != 0,
}
defer func() {
if opts.MappingIdentity != nil {
opts.MappingIdentity.DecRef()
}
}()
if !anon {
// Convert the passed FD to a file reference.
file := t.FDMap().GetFile(fd)
if file == nil {
return 0, nil, syserror.EBADF
}
defer file.DecRef()
flags := file.Flags()
// mmap unconditionally requires that the FD is readable.
if !flags.Read {
return 0, nil, syserror.EACCES
}
// MAP_SHARED requires that the FD be writable for PROT_WRITE.
if shared && !flags.Write {
opts.MaxPerms.Write = false
}
if err := file.ConfigureMMap(t, &opts); err != nil {
return 0, nil, err
}
}
rv, err := t.MemoryManager().MMap(t, opts)
return uintptr(rv), nil, err
}
// Munmap implements linux syscall munmap(2).
func Munmap(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
return 0, nil, t.MemoryManager().MUnmap(t, args[0].Pointer(), args[1].Uint64())
}
// Mremap implements linux syscall mremap(2).
func Mremap(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
oldAddr := args[0].Pointer()
oldSize := args[1].Uint64()
newSize := args[2].Uint64()
flags := args[3].Uint64()
newAddr := args[4].Pointer()
if flags&^(linux.MREMAP_MAYMOVE|linux.MREMAP_FIXED) != 0 {
return 0, nil, syserror.EINVAL
}
mayMove := flags&linux.MREMAP_MAYMOVE != 0
fixed := flags&linux.MREMAP_FIXED != 0
var moveMode mm.MRemapMoveMode
switch {
case !mayMove && !fixed:
moveMode = mm.MRemapNoMove
case mayMove && !fixed:
moveMode = mm.MRemapMayMove
case mayMove && fixed:
moveMode = mm.MRemapMustMove
case !mayMove && fixed:
// "If MREMAP_FIXED is specified, then MREMAP_MAYMOVE must also be
// specified." - mremap(2)
return 0, nil, syserror.EINVAL
}
rv, err := t.MemoryManager().MRemap(t, oldAddr, oldSize, newSize, mm.MRemapOpts{
Move: moveMode,
NewAddr: newAddr,
})
return uintptr(rv), nil, err
}
// Mprotect implements linux syscall mprotect(2).
func Mprotect(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
length := args[1].Uint64()
prot := args[2].Int()
err := t.MemoryManager().MProtect(args[0].Pointer(), length, usermem.AccessType{
Read: linux.PROT_READ&prot != 0,
Write: linux.PROT_WRITE&prot != 0,
Execute: linux.PROT_EXEC&prot != 0,
}, linux.PROT_GROWSDOWN&prot != 0)
return 0, nil, err
}
// Madvise implements linux syscall madvise(2).
func Madvise(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
length := uint64(args[1].SizeT())
adv := args[2].Int()
// "The Linux implementation requires that the address addr be
// page-aligned, and allows length to be zero." - madvise(2)
if addr.RoundDown() != addr {
return 0, nil, syserror.EINVAL
}
if length == 0 {
return 0, nil, nil
}
// Not explicitly stated: length need not be page-aligned.
lenAddr, ok := usermem.Addr(length).RoundUp()
if !ok {
return 0, nil, syserror.EINVAL
}
length = uint64(lenAddr)
switch adv {
case linux.MADV_DONTNEED:
return 0, nil, t.MemoryManager().Decommit(addr, length)
case linux.MADV_HUGEPAGE, linux.MADV_NOHUGEPAGE:
fallthrough
case linux.MADV_MERGEABLE, linux.MADV_UNMERGEABLE:
fallthrough
case linux.MADV_DONTDUMP, linux.MADV_DODUMP:
// TODO: Core dumping isn't implemented, so these are
// no-ops.
fallthrough
case linux.MADV_NORMAL, linux.MADV_RANDOM, linux.MADV_SEQUENTIAL, linux.MADV_WILLNEED:
// Do nothing, we totally ignore the suggestions above.
return 0, nil, nil
case linux.MADV_REMOVE, linux.MADV_DOFORK, linux.MADV_DONTFORK:
// These "suggestions" have application-visible side effects, so we
// have to indicate that we don't support them.
return 0, nil, syserror.ENOSYS
case linux.MADV_HWPOISON:
// Only privileged processes are allowed to poison pages.
return 0, nil, syserror.EPERM
default:
// If adv is not a valid value tell the caller.
return 0, nil, syserror.EINVAL
}
}
func copyOutIfNotNull(t *kernel.Task, ptr usermem.Addr, val interface{}) (int, error) {
if ptr != 0 {
return t.CopyOut(ptr, val)
}
return 0, nil
}
// GetMempolicy implements the syscall get_mempolicy(2).
func GetMempolicy(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
mode := args[0].Pointer()
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
addr := args[3].Pointer()
flags := args[4].Uint()
memsAllowed := flags&linux.MPOL_F_MEMS_ALLOWED != 0
nodeFlag := flags&linux.MPOL_F_NODE != 0
addrFlag := flags&linux.MPOL_F_ADDR != 0
// TODO: Once sysfs is implemented, report a single numa node in
// /sys/devices/system/node.
if nodemask != 0 && maxnode < 1 {
return 0, nil, syserror.EINVAL
}
// 'addr' provided iff 'addrFlag' set.
if addrFlag == (addr == 0) {
return 0, nil, syserror.EINVAL
}
// Default policy for the thread.
if flags == 0 {
policy, nodemaskVal := t.NumaPolicy()
if _, err := copyOutIfNotNull(t, mode, policy); err != nil {
return 0, nil, syserror.EFAULT
}
if _, err := copyOutIfNotNull(t, nodemask, nodemaskVal); err != nil {
return 0, nil, syserror.EFAULT
}
return 0, nil, nil
}
// Report all nodes available to caller.
if memsAllowed {
// MPOL_F_NODE and MPOL_F_ADDR not allowed with MPOL_F_MEMS_ALLOWED.
if nodeFlag || addrFlag {
return 0, nil, syserror.EINVAL
}
// Report a single numa node.
if _, err := copyOutIfNotNull(t, nodemask, uint32(0x1)); err != nil {
return 0, nil, syserror.EFAULT
}
return 0, nil, nil
}
if addrFlag {
if nodeFlag {
// Return the id for the node where 'addr' resides, via 'mode'.
//
// The real get_mempolicy(2) allocates the page referenced by 'addr'
// by simulating a read, if it is unallocated before the call. It
// then returns the node the page is allocated on through the mode
// pointer.
b := t.CopyScratchBuffer(1)
_, err := t.CopyInBytes(addr, b)
if err != nil {
return 0, nil, syserror.EFAULT
}
if _, err := copyOutIfNotNull(t, mode, int32(0)); err != nil {
return 0, nil, syserror.EFAULT
}
} else {
storedPolicy, _ := t.NumaPolicy()
// Return the policy governing the memory referenced by 'addr'.
if _, err := copyOutIfNotNull(t, mode, int32(storedPolicy)); err != nil {
return 0, nil, syserror.EFAULT
}
}
return 0, nil, nil
}
storedPolicy, _ := t.NumaPolicy()
if nodeFlag && (storedPolicy&^linux.MPOL_MODE_FLAGS == linux.MPOL_INTERLEAVE) {
// Policy for current thread is to interleave memory between
// nodes. Return the next node we'll allocate on. Since we only have a
// single node, this is always node 0.
if _, err := copyOutIfNotNull(t, mode, int32(0)); err != nil {
return 0, nil, syserror.EFAULT
}
return 0, nil, nil
}
return 0, nil, syserror.EINVAL
}
func allowedNodesMask() uint32 {
const maxNodes = 1
return ^uint32((1 << maxNodes) - 1)
}
// SetMempolicy implements the syscall set_mempolicy(2).
func SetMempolicy(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
modeWithFlags := args[0].Int()
nodemask := args[1].Pointer()
maxnode := args[2].Uint()
if maxnode < 1 {
return 0, nil, syserror.EINVAL
}
if modeWithFlags&linux.MPOL_MODE_FLAGS == linux.MPOL_MODE_FLAGS {
// Can't specify multiple modes simultaneously. Must also contain a
// valid mode, which we check below.
return 0, nil, syserror.EINVAL
}
mode := modeWithFlags &^ linux.MPOL_MODE_FLAGS
if mode < 0 || mode >= linux.MPOL_MAX {
return 0, nil, syserror.EINVAL
}
var nodemaskVal uint32
if _, err := t.CopyIn(nodemask, &nodemaskVal); err != nil {
return 0, nil, syserror.EFAULT
}
// When setting MPOL_INTERLEAVE, nodemask must not be empty.
if mode == linux.MPOL_INTERLEAVE && nodemaskVal == 0 {
return 0, nil, syserror.EINVAL
}
if nodemaskVal&allowedNodesMask() != 0 {
// Invalid node specified.
return 0, nil, syserror.EINVAL
}
t.SetNumaPolicy(int32(modeWithFlags), nodemaskVal)
return 0, nil, nil
}
// Mincore implements the syscall mincore(2).
func Mincore(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
length := args[1].SizeT()
vec := args[2].Pointer()
if addr != addr.RoundDown() {
return 0, nil, syserror.EINVAL
}
// "The length argument need not be a multiple of the page size, but since
// residency information is returned for whole pages, length is effectively
// rounded up to the next multiple of the page size." - mincore(2)
la, ok := usermem.Addr(length).RoundUp()
if !ok {
return 0, nil, syserror.ENOMEM
}
ar, ok := addr.ToRange(uint64(la))
if !ok {
return 0, nil, syserror.ENOMEM
}
// Pretend that all mapped pages are "resident in core".
mapped := t.MemoryManager().VirtualMemorySizeRange(ar)
// "ENOMEM: addr to addr + length contained unmapped memory."
if mapped != uint64(la) {
return 0, nil, syserror.ENOMEM
}
resident := bytes.Repeat([]byte{1}, int(mapped/usermem.PageSize))
_, err := t.CopyOut(vec, resident)
return 0, nil, err
}
// Msync implements Linux syscall msync(2).
func Msync(t *kernel.Task, args arch.SyscallArguments) (uintptr, *kernel.SyscallControl, error) {
addr := args[0].Pointer()
length := args[1].SizeT()
flags := args[2].Int()
if addr != addr.RoundDown() {
return 0, nil, syserror.EINVAL
}
if length == 0 {
return 0, nil, nil
}
la, ok := usermem.Addr(length).RoundUp()
if !ok {
return 0, nil, syserror.ENOMEM
}
// "The flags argument should specify exactly one of MS_ASYNC and MS_SYNC,
// and may additionally include the MS_INVALIDATE bit. ... However, Linux
// permits a call to msync() that specifies neither of these flags, with
// semantics that are (currently) equivalent to specifying MS_ASYNC." -
// msync(2)
if flags&^(linux.MS_ASYNC|linux.MS_SYNC|linux.MS_INVALIDATE) != 0 {
return 0, nil, syserror.EINVAL
}
sync := flags&linux.MS_SYNC != 0
if sync && flags&linux.MS_ASYNC != 0 {
return 0, nil, syserror.EINVAL
}
// MS_INVALIDATE "asks to invalidate other mappings of the same file (so
// that they can be updated with the fresh values just written)". This is a
// no-op given that shared memory exists. However, MS_INVALIDATE can also
// be used to detect mlocks: "EBUSY: MS_INVALIDATE was specified in flags,
// and a memory lock exists for the specified address range." Given that
// mlock is stubbed out, it's unsafe to pass MS_INVALIDATE silently since
// some user program could be using it for synchronization.
if flags&linux.MS_INVALIDATE != 0 {
return 0, nil, syserror.EINVAL
}
// MS_SYNC "requests an update and waits for it to complete."
if sync {
err := t.MemoryManager().Sync(t, addr, uint64(la))
// Sync calls fsync, the same interrupt conversion rules apply, see
// mm/msync.c, fsync POSIX.1-2008.
return 0, nil, syserror.ConvertIntr(err, kernel.ERESTARTSYS)
}
// MS_ASYNC "specifies that an update be scheduled, but the call returns
// immediately". As long as dirty pages are tracked and eventually written
// back, this is a no-op. (Correspondingly: "Since Linux 2.6.19, MS_ASYNC
// is in fact a no-op, since the kernel properly tracks dirty pages and
// flushes them to storage as necessary.")
//
// However: "ENOMEM: The indicated memory (or part of it) was not mapped."
// This applies even for MS_ASYNC.
ar, ok := addr.ToRange(uint64(la))
if !ok {
return 0, nil, syserror.ENOMEM
}
mapped := t.MemoryManager().VirtualMemorySizeRange(ar)
if mapped != uint64(la) {
return 0, nil, syserror.ENOMEM
}
return 0, nil, nil
}