gvisor/tools/checklocks/analysis.go

652 lines
22 KiB
Go

// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package checklocks
import (
"go/token"
"go/types"
"strings"
"golang.org/x/tools/go/ssa"
)
func gcd(a, b atomicAlignment) atomicAlignment {
for b != 0 {
a, b = b, a%b
}
return a
}
// typeAlignment returns the type alignment for the given type.
func (pc *passContext) typeAlignment(pkg *types.Package, obj types.Object) atomicAlignment {
requiredOffset := atomicAlignment(1)
if pc.pass.ImportObjectFact(obj, &requiredOffset) {
return requiredOffset
}
switch x := obj.Type().Underlying().(type) {
case *types.Struct:
fields := make([]*types.Var, x.NumFields())
for i := 0; i < x.NumFields(); i++ {
fields[i] = x.Field(i)
}
offsets := pc.pass.TypesSizes.Offsetsof(fields)
for i := 0; i < x.NumFields(); i++ {
// Check the offset, and then assuming that this offset
// aligns with the offset for the broader type.
fieldRequired := pc.typeAlignment(pkg, fields[i])
if offsets[i]%int64(fieldRequired) != 0 {
// The offset of this field is not compatible.
pc.maybeFail(fields[i].Pos(), "have alignment %d, need %d", offsets[i], fieldRequired)
}
// Ensure the requiredOffset is the LCM of the offset.
requiredOffset *= fieldRequired / gcd(requiredOffset, fieldRequired)
}
case *types.Array:
// Export direct alignment requirements.
if named, ok := x.Elem().(*types.Named); ok {
requiredOffset = pc.typeAlignment(pkg, named.Obj())
}
default:
// Use the compiler's underlying alignment.
requiredOffset = atomicAlignment(pc.pass.TypesSizes.Alignof(obj.Type().Underlying()))
}
if pkg == obj.Pkg() {
// Cache as an object fact, to subsequent calls. Note that we
// can only export object facts for the package that we are
// currently analyzing. There may be no exported facts for
// array types or alias types, for example.
pc.pass.ExportObjectFact(obj, &requiredOffset)
}
return requiredOffset
}
// checkTypeAlignment checks the alignment of the given type.
//
// This calls typeAlignment, which resolves all types recursively. This method
// should be called for all types individual to ensure full coverage.
func (pc *passContext) checkTypeAlignment(pkg *types.Package, typ *types.Named) {
_ = pc.typeAlignment(pkg, typ.Obj())
}
// checkAtomicCall checks for an atomic access.
//
// inst is the instruction analyzed, obj is used only for maybeFail.
//
// If mustBeAtomic is true, then we assert that the instruction *is* an atomic
// fucnction call. If it is false, then we assert that it is *not* an atomic
// dispatch.
//
// If readOnly is true, then only atomic read access are allowed. Note that
// readOnly is only meaningful if mustBeAtomic is set.
func (pc *passContext) checkAtomicCall(inst ssa.Instruction, obj types.Object, mustBeAtomic, readOnly bool) {
switch x := inst.(type) {
case *ssa.Call:
if x.Common().IsInvoke() {
if mustBeAtomic {
// This is an illegal interface dispatch.
pc.maybeFail(inst.Pos(), "dynamic dispatch with atomic-only field")
}
return
}
fn, ok := x.Common().Value.(*ssa.Function)
if !ok {
if mustBeAtomic {
// This is an illegal call to a non-static function.
pc.maybeFail(inst.Pos(), "dispatch to non-static function with atomic-only field")
}
return
}
pkg := fn.Package()
if pkg == nil {
if mustBeAtomic {
// This is a call to some shared wrapper function.
pc.maybeFail(inst.Pos(), "dispatch to shared function or wrapper")
}
return
}
var lff lockFunctionFacts // Check for exemption.
if obj := fn.Object(); obj != nil && pc.pass.ImportObjectFact(obj, &lff) && lff.Ignore {
return
}
if name := pkg.Pkg.Name(); name != "atomic" && name != "atomicbitops" {
if mustBeAtomic {
// This is an illegal call to a non-atomic package function.
pc.maybeFail(inst.Pos(), "dispatch to non-atomic function with atomic-only field")
}
return
}
if !mustBeAtomic {
// We are *not* expecting an atomic dispatch.
if _, ok := pc.forced[pc.positionKey(inst.Pos())]; !ok {
pc.maybeFail(inst.Pos(), "unexpected call to atomic function")
}
}
if !strings.HasPrefix(fn.Name(), "Load") && readOnly {
// We are not allowing any reads in this context.
if _, ok := pc.forced[pc.positionKey(inst.Pos())]; !ok {
pc.maybeFail(inst.Pos(), "unexpected call to atomic write function, is a lock missing?")
}
return
}
default:
if mustBeAtomic {
// This is something else entirely.
if _, ok := pc.forced[pc.positionKey(inst.Pos())]; !ok {
pc.maybeFail(inst.Pos(), "illegal use of atomic-only field by %T instruction", inst)
}
return
}
}
}
func resolveStruct(typ types.Type) (*types.Struct, bool) {
structType, ok := typ.Underlying().(*types.Struct)
if ok {
return structType, true
}
ptrType, ok := typ.Underlying().(*types.Pointer)
if ok {
return resolveStruct(ptrType.Elem())
}
return nil, false
}
func findField(typ types.Type, field int) (types.Object, bool) {
structType, ok := resolveStruct(typ)
if !ok {
return nil, false
}
return structType.Field(field), true
}
// instructionWithReferrers is a generalization over ssa.Field, ssa.FieldAddr.
type instructionWithReferrers interface {
ssa.Instruction
Referrers() *[]ssa.Instruction
}
// checkFieldAccess checks the validity of a field access.
//
// This also enforces atomicity constraints for fields that must be accessed
// atomically. The parameter isWrite indicates whether this field is used for
// a write operation.
func (pc *passContext) checkFieldAccess(inst instructionWithReferrers, structObj ssa.Value, field int, ls *lockState, isWrite bool) {
var (
lff lockFieldFacts
lgf lockGuardFacts
guardsFound int
guardsHeld int
)
fieldObj, _ := findField(structObj.Type(), field)
pc.pass.ImportObjectFact(fieldObj, &lff)
pc.pass.ImportObjectFact(fieldObj, &lgf)
for guardName, fl := range lgf.GuardedBy {
guardsFound++
r := fl.resolve(structObj)
if _, ok := ls.isHeld(r, isWrite); ok {
guardsHeld++
continue
}
if _, ok := pc.forced[pc.positionKey(inst.Pos())]; ok {
// Mark this as locked, since it has been forced. All
// forces are treated as an exclusive lock.
ls.lockField(r, true /* exclusive */)
guardsHeld++
continue
}
// Note that we may allow this if the disposition is atomic,
// and we are allowing atomic reads only. This will fall into
// the atomic disposition check below, which asserts that the
// access is atomic. Further, guardsHeld < guardsFound will be
// true for this case, so we require it to be read-only.
if lgf.AtomicDisposition != atomicRequired {
// There is no force key, no atomic access and no lock held.
pc.maybeFail(inst.Pos(), "invalid field access, %s must be locked when accessing %s (locks: %s)", guardName, fieldObj.Name(), ls.String())
}
}
// Check the atomic access for this field.
switch lgf.AtomicDisposition {
case atomicRequired:
// Check that this is used safely as an input.
readOnly := guardsHeld < guardsFound
if refs := inst.Referrers(); refs != nil {
for _, otherInst := range *refs {
pc.checkAtomicCall(otherInst, fieldObj, true, readOnly)
}
}
// Check that this is not otherwise written non-atomically,
// even if we do hold all the locks.
if isWrite {
pc.maybeFail(inst.Pos(), "non-atomic write of field %s, writes must still be atomic with locks held (locks: %s)", fieldObj.Name(), ls.String())
}
case atomicDisallow:
// Check that this is *not* used atomically.
if refs := inst.Referrers(); refs != nil {
for _, otherInst := range *refs {
pc.checkAtomicCall(otherInst, fieldObj, false, false)
}
}
}
}
func (pc *passContext) checkCall(call callCommon, ls *lockState) {
// See: https://godoc.org/golang.org/x/tools/go/ssa#CallCommon
//
// 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon represents an ordinary
// function call of the value in Value, which may be a *Builtin, a *Function or any
// other value of kind 'func'.
//
// Value may be one of:
// (a) a *Function, indicating a statically dispatched call
// to a package-level function, an anonymous function, or
// a method of a named type.
//
// (b) a *MakeClosure, indicating an immediately applied
// function literal with free variables.
//
// (c) a *Builtin, indicating a statically dispatched call
// to a built-in function.
//
// (d) any other value, indicating a dynamically dispatched
// function call.
switch fn := call.Common().Value.(type) {
case *ssa.Function:
var lff lockFunctionFacts
if fn.Object() != nil {
pc.pass.ImportObjectFact(fn.Object(), &lff)
pc.checkFunctionCall(call, fn, &lff, ls)
} else {
// Anonymous functions have no facts, and cannot be
// annotated. We don't check for violations using the
// function facts, since they cannot exist. Instead, we
// do a fresh analysis using the current lock state.
fnls := ls.fork()
for i, arg := range call.Common().Args {
fnls.store(fn.Params[i], arg)
}
pc.checkFunction(call, fn, &lff, fnls, true /* force */)
}
case *ssa.MakeClosure:
// Note that creating and then invoking closures locally is
// allowed, but analysis of passing closures is done when
// checking individual instructions.
pc.checkClosure(call, fn, ls)
default:
return
}
}
// postFunctionCallUpdate updates all conditions.
func (pc *passContext) postFunctionCallUpdate(call callCommon, lff *lockFunctionFacts, ls *lockState) {
// Release all locks not still held.
for fieldName, fg := range lff.HeldOnEntry {
if _, ok := lff.HeldOnExit[fieldName]; ok {
continue
}
r := fg.resolveCall(call.Common().Args, call.Value())
if s, ok := ls.unlockField(r, fg.Exclusive); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
pc.maybeFail(call.Pos(), "attempt to release %s (%s), but not held (locks: %s)", fieldName, s, ls.String())
}
}
}
// Update all held locks if acquired.
for fieldName, fg := range lff.HeldOnExit {
if _, ok := lff.HeldOnEntry[fieldName]; ok {
continue
}
// Acquire the lock per the annotation.
r := fg.resolveCall(call.Common().Args, call.Value())
if s, ok := ls.lockField(r, fg.Exclusive); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
pc.maybeFail(call.Pos(), "attempt to acquire %s (%s), but already held (locks: %s)", fieldName, s, ls.String())
}
}
}
}
// exclusiveStr returns a string describing exclusive requirements.
func exclusiveStr(exclusive bool) string {
if exclusive {
return "exclusively"
}
return "non-exclusively"
}
// checkFunctionCall checks preconditions for function calls, and tracks the
// lock state by recording relevant calls to sync functions. Note that calls to
// atomic functions are tracked by checkFieldAccess by looking directly at the
// referrers (because ordering doesn't matter there, so we need not scan in
// instruction order).
func (pc *passContext) checkFunctionCall(call callCommon, fn *ssa.Function, lff *lockFunctionFacts, ls *lockState) {
// Check all guards required are held.
for fieldName, fg := range lff.HeldOnEntry {
r := fg.resolveCall(call.Common().Args, call.Value())
if s, ok := ls.isHeld(r, fg.Exclusive); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
pc.maybeFail(call.Pos(), "must hold %s %s (%s) to call %s, but not held (locks: %s)", fieldName, exclusiveStr(fg.Exclusive), s, fn.Name(), ls.String())
} else {
// Force the lock to be acquired.
ls.lockField(r, fg.Exclusive)
}
}
}
// Update all lock state accordingly.
pc.postFunctionCallUpdate(call, lff, ls)
// Check if it's a method dispatch for something in the sync package.
// See: https://godoc.org/golang.org/x/tools/go/ssa#Function
if fn.Package() != nil && fn.Package().Pkg.Name() == "sync" && fn.Signature.Recv() != nil {
isExclusive := false
switch fn.Name() {
case "Lock":
isExclusive = true
fallthrough
case "RLock":
if s, ok := ls.lockField(resolvedValue{value: call.Common().Args[0], valid: true}, isExclusive); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
// Double locking a mutex that is already locked.
pc.maybeFail(call.Pos(), "%s already locked (locks: %s)", s, ls.String())
}
}
case "Unlock":
isExclusive = true
fallthrough
case "RUnlock":
if s, ok := ls.unlockField(resolvedValue{value: call.Common().Args[0], valid: true}, isExclusive); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
// Unlocking something that is already unlocked.
pc.maybeFail(call.Pos(), "%s already unlocked or locked differently (locks: %s)", s, ls.String())
}
}
case "DowngradeLock":
if s, ok := ls.downgradeField(resolvedValue{value: call.Common().Args[0], valid: true}); !ok {
if _, ok := pc.forced[pc.positionKey(call.Pos())]; !ok {
// Downgrading something that may not be downgraded.
pc.maybeFail(call.Pos(), "%s already unlocked or not exclusive (locks: %s)", s, ls.String())
}
}
}
}
}
// checkClosure forks the lock state, and creates a binding for the FreeVars of
// the closure. This allows the analysis to resolve the closure.
func (pc *passContext) checkClosure(call callCommon, fn *ssa.MakeClosure, ls *lockState) {
clls := ls.fork()
clfn := fn.Fn.(*ssa.Function)
for i, fv := range clfn.FreeVars {
clls.store(fv, fn.Bindings[i])
}
// Note that this is *not* a call to check function call, which checks
// against the function preconditions. Instead, this does a fresh
// analysis of the function from source code with a different state.
var nolff lockFunctionFacts
pc.checkFunction(call, clfn, &nolff, clls, true /* force */)
}
// freshAlloc indicates that v has been allocated within the local scope. There
// is no lock checking done on objects that are freshly allocated.
func freshAlloc(v ssa.Value) bool {
switch x := v.(type) {
case *ssa.Alloc:
return true
case *ssa.FieldAddr:
return freshAlloc(x.X)
case *ssa.Field:
return freshAlloc(x.X)
case *ssa.IndexAddr:
return freshAlloc(x.X)
case *ssa.Index:
return freshAlloc(x.X)
case *ssa.Convert:
return freshAlloc(x.X)
case *ssa.ChangeType:
return freshAlloc(x.X)
default:
return false
}
}
// isWrite indicates that this value is used as the addr field in a store.
//
// Note that this may still be used for a write. The return here is optimistic
// but sufficient for basic analysis.
func isWrite(v ssa.Value) bool {
refs := v.Referrers()
if refs == nil {
return false
}
for _, ref := range *refs {
if s, ok := ref.(*ssa.Store); ok && s.Addr == v {
return true
}
}
return false
}
// callCommon is an ssa.Value that also implements Common.
type callCommon interface {
Pos() token.Pos
Common() *ssa.CallCommon
Value() *ssa.Call
}
// checkInstruction checks the legality the single instruction based on the
// current lockState.
func (pc *passContext) checkInstruction(inst ssa.Instruction, ls *lockState) (*ssa.Return, *lockState) {
switch x := inst.(type) {
case *ssa.Store:
// Record that this value is holding this other value. This is
// because at the beginning of each ssa execution, there is a
// series of assignments of parameter values to alloc objects.
// This allows us to trace these back to the original
// parameters as aliases above.
//
// Note that this may overwrite an existing value in the lock
// state, but this is intentional.
ls.store(x.Addr, x.Val)
case *ssa.Field:
if !freshAlloc(x.X) {
pc.checkFieldAccess(x, x.X, x.Field, ls, false)
}
case *ssa.FieldAddr:
if !freshAlloc(x.X) {
pc.checkFieldAccess(x, x.X, x.Field, ls, isWrite(x))
}
case *ssa.Call:
pc.checkCall(x, ls)
case *ssa.Defer:
ls.pushDefer(x)
case *ssa.RunDefers:
for d := ls.popDefer(); d != nil; d = ls.popDefer() {
pc.checkCall(d, ls)
}
case *ssa.MakeClosure:
refs := x.Referrers()
if refs == nil {
// This is strange, it's not used? Ignore this case,
// since it will probably be optimized away.
return nil, nil
}
hasNonCall := false
for _, ref := range *refs {
switch ref.(type) {
case *ssa.Call, *ssa.Defer:
// Analysis will be done on the call itself
// subsequently, including the lock state at
// the time of the call.
default:
// We need to analyze separately. Per below,
// this means that we'll analyze at closure
// construction time no zero assumptions about
// when it will be called.
hasNonCall = true
}
}
if !hasNonCall {
return nil, nil
}
// Analyze the closure without bindings. This means that we
// assume no lock facts or have any existing lock state. Only
// trivial closures are acceptable in this case.
clfn := x.Fn.(*ssa.Function)
var nolff lockFunctionFacts
pc.checkFunction(nil, clfn, &nolff, nil, false /* force */)
case *ssa.Return:
return x, ls // Valid return state.
}
return nil, nil
}
// checkBasicBlock traverses the control flow graph starting at a set of given
// block and checks each instruction for allowed operations.
func (pc *passContext) checkBasicBlock(fn *ssa.Function, block *ssa.BasicBlock, lff *lockFunctionFacts, parent *lockState, seen map[*ssa.BasicBlock]*lockState) *lockState {
if oldLS, ok := seen[block]; ok && oldLS.isCompatible(parent) {
return nil
}
// If the lock state is not compatible, then we need to do the
// recursive analysis to ensure that it is still sane. For example, the
// following is guaranteed to generate incompatible locking states:
//
// if foo {
// mu.Lock()
// }
// other stuff ...
// if foo {
// mu.Unlock()
// }
var (
rv *ssa.Return
rls *lockState
)
// Analyze this block.
seen[block] = parent
ls := parent.fork()
for _, inst := range block.Instrs {
rv, rls = pc.checkInstruction(inst, ls)
if rls != nil {
failed := false
// Validate held locks.
for fieldName, fg := range lff.HeldOnExit {
r := fg.resolveStatic(fn, rv)
if s, ok := rls.isHeld(r, fg.Exclusive); !ok {
if _, ok := pc.forced[pc.positionKey(rv.Pos())]; !ok {
pc.maybeFail(rv.Pos(), "lock %s (%s) not held %s (locks: %s)", fieldName, s, exclusiveStr(fg.Exclusive), rls.String())
failed = true
} else {
// Force the lock to be acquired.
rls.lockField(r, fg.Exclusive)
}
}
}
// Check for other locks, but only if the above didn't trip.
if !failed && rls.count() != len(lff.HeldOnExit) {
pc.maybeFail(rv.Pos(), "return with unexpected locks held (locks: %s)", rls.String())
}
}
}
// Analyze all successors.
for _, succ := range block.Succs {
// Collect possible return values, and make sure that the lock
// state aligns with any return value that we may have found
// above. Note that checkBasicBlock will recursively analyze
// the lock state to ensure that Releases and Acquires are
// respected.
if pls := pc.checkBasicBlock(fn, succ, lff, ls, seen); pls != nil {
if rls != nil && !rls.isCompatible(pls) {
if _, ok := pc.forced[pc.positionKey(fn.Pos())]; !ok {
pc.maybeFail(fn.Pos(), "incompatible return states (first: %s, second: %s)", rls.String(), pls.String())
}
}
rls = pls
}
}
return rls
}
// checkFunction checks a function invocation, typically starting with nil lockState.
func (pc *passContext) checkFunction(call callCommon, fn *ssa.Function, lff *lockFunctionFacts, parent *lockState, force bool) {
defer func() {
// Mark this function as checked. This is used by the top-level
// loop to ensure that all anonymous functions are scanned, if
// they are not explicitly invoked here. Note that this can
// happen if the anonymous functions are e.g. passed only as
// parameters or used to initialize some structure.
pc.functions[fn] = struct{}{}
}()
if _, ok := pc.functions[fn]; !force && ok {
// This function has already been analyzed at least once.
// That's all we permit for each function, although this may
// cause some anonymous functions to be analyzed in only one
// context.
return
}
// If no return value is provided, then synthesize one. This is used
// below only to check against the locks preconditions, which may
// include return values.
if call == nil {
call = &ssa.Call{Call: ssa.CallCommon{Value: fn}}
}
// Initialize ls with any preconditions that require locks to be held
// for the method to be invoked. Note that in the overwhleming majority
// of cases, parent will be nil. However, in the case of closures and
// anonymous functions, we may start with a non-nil lock state.
ls := parent.fork()
for fieldName, fg := range lff.HeldOnEntry {
// The first is the method object itself so we skip that when looking
// for receiver/function parameters.
r := fg.resolveStatic(fn, call.Value())
if s, ok := ls.lockField(r, fg.Exclusive); !ok {
// This can only happen if the same value is declared
// multiple times, and should be caught by the earlier
// fact scanning. Keep it here as a sanity check.
pc.maybeFail(fn.Pos(), "lock %s (%s) acquired multiple times or differently (locks: %s)", fieldName, s, ls.String())
}
}
// Scan the blocks.
seen := make(map[*ssa.BasicBlock]*lockState)
if len(fn.Blocks) > 0 {
pc.checkBasicBlock(fn, fn.Blocks[0], lff, ls, seen)
}
// Scan the recover block.
if fn.Recover != nil {
pc.checkBasicBlock(fn, fn.Recover, lff, ls, seen)
}
// Update all lock state accordingly. This will be called only if we
// are doing inline analysis for e.g. an anonymous function.
if call != nil && parent != nil {
pc.postFunctionCallUpdate(call, lff, parent)
}
}