gvisor/test/syscalls/linux/raw_socket.cc

903 lines
29 KiB
C++

// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <linux/capability.h>
#include <linux/filter.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/ip_icmp.h>
#include <poll.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include "gtest/gtest.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/capability_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/test_util.h"
// Note: in order to run these tests, /proc/sys/net/ipv4/ping_group_range will
// need to be configured to let the superuser create ping sockets (see icmp(7)).
namespace gvisor {
namespace testing {
namespace {
// Fixture for tests parameterized by protocol.
class RawSocketTest : public ::testing::TestWithParam<std::tuple<int, int>> {
protected:
// Creates a socket to be used in tests.
void SetUp() override;
// Closes the socket created by SetUp().
void TearDown() override;
// Sends buf via s_.
void SendBuf(const char* buf, int buf_len);
// Reads from s_ into recv_buf.
void ReceiveBuf(char* recv_buf, size_t recv_buf_len);
void ReceiveBufFrom(int sock, char* recv_buf, size_t recv_buf_len);
int Protocol() { return std::get<0>(GetParam()); }
int Family() { return std::get<1>(GetParam()); }
socklen_t AddrLen() {
if (Family() == AF_INET) {
return sizeof(sockaddr_in);
}
return sizeof(sockaddr_in6);
}
int HdrLen() {
if (Family() == AF_INET) {
return sizeof(struct iphdr);
}
// IPv6 raw sockets don't include the header.
return 0;
}
// The socket used for both reading and writing.
int s_;
// The loopback address.
struct sockaddr_storage addr_;
};
void RawSocketTest::SetUp() {
if (!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW))) {
ASSERT_THAT(socket(Family(), SOCK_RAW, Protocol()),
SyscallFailsWithErrno(EPERM));
GTEST_SKIP();
}
ASSERT_THAT(s_ = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
addr_ = {};
// We don't set ports because raw sockets don't have a notion of ports.
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr_);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
} else {
struct sockaddr_in6* sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr_);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = in6addr_loopback;
}
}
void RawSocketTest::TearDown() {
// TearDown will be run even if we skip the test.
if (ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW))) {
EXPECT_THAT(close(s_), SyscallSucceeds());
}
}
// We should be able to create multiple raw sockets for the same protocol.
// BasicRawSocket::Setup creates the first one, so we only have to create one
// more here.
TEST_P(RawSocketTest, MultipleCreation) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int s2;
ASSERT_THAT(s2 = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
ASSERT_THAT(close(s2), SyscallSucceeds());
}
// Test that shutting down an unconnected socket fails.
TEST_P(RawSocketTest, FailShutdownWithoutConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(shutdown(s_, SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
ASSERT_THAT(shutdown(s_, SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
}
// Shutdown is a no-op for raw sockets (and datagram sockets in general).
TEST_P(RawSocketTest, ShutdownWriteNoop) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(shutdown(s_, SHUT_WR), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "noop";
ASSERT_THAT(RetryEINTR(write)(s_, kBuf, sizeof(kBuf)),
SyscallSucceedsWithValue(sizeof(kBuf)));
}
// Shutdown is a no-op for raw sockets (and datagram sockets in general).
TEST_P(RawSocketTest, ShutdownReadNoop) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(shutdown(s_, SHUT_RD), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "gdg";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
std::vector<char> c(sizeof(kBuf) + HdrLen());
ASSERT_THAT(read(s_, c.data(), c.size()), SyscallSucceedsWithValue(c.size()));
}
// Test that listen() fails.
TEST_P(RawSocketTest, FailListen) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(listen(s_, 1), SyscallFailsWithErrno(ENOTSUP));
}
// Test that accept() fails.
TEST_P(RawSocketTest, FailAccept) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
struct sockaddr saddr;
socklen_t addrlen;
ASSERT_THAT(accept(s_, &saddr, &addrlen), SyscallFailsWithErrno(ENOTSUP));
}
// Test that getpeername() returns nothing before connect().
TEST_P(RawSocketTest, FailGetPeerNameBeforeConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
struct sockaddr saddr;
socklen_t addrlen = sizeof(saddr);
ASSERT_THAT(getpeername(s_, &saddr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
// Test that getpeername() returns something after connect().
TEST_P(RawSocketTest, GetPeerName) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
struct sockaddr saddr;
socklen_t addrlen = sizeof(saddr);
ASSERT_THAT(getpeername(s_, &saddr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
ASSERT_GT(addrlen, 0);
}
// Test that the socket is writable immediately.
TEST_P(RawSocketTest, PollWritableImmediately) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
struct pollfd pfd = {};
pfd.fd = s_;
pfd.events = POLLOUT;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 10000), SyscallSucceedsWithValue(1));
}
// Test that the socket isn't readable before receiving anything.
TEST_P(RawSocketTest, PollNotReadableInitially) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Try to receive data with MSG_DONTWAIT, which returns immediately if there's
// nothing to be read.
char buf[117];
ASSERT_THAT(RetryEINTR(recv)(s_, buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
// Test that the socket becomes readable once something is written to it.
TEST_P(RawSocketTest, PollTriggeredOnWrite) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Write something so that there's data to be read.
// Arbitrary.
constexpr char kBuf[] = "JP5";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
struct pollfd pfd = {};
pfd.fd = s_;
pfd.events = POLLIN;
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, 10000), SyscallSucceedsWithValue(1));
}
// Test that we can connect() to a valid IP (loopback).
TEST_P(RawSocketTest, ConnectToLoopback) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Test that calling send() without connect() fails.
TEST_P(RawSocketTest, SendWithoutConnectFails) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Arbitrary.
constexpr char kBuf[] = "Endgame was good";
ASSERT_THAT(send(s_, kBuf, sizeof(kBuf), 0),
SyscallFailsWithErrno(EDESTADDRREQ));
}
// Wildcard Bind.
TEST_P(RawSocketTest, BindToWildcard) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
struct sockaddr_storage addr;
addr = {};
// We don't set ports because raw sockets don't have a notion of ports.
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_ANY);
} else {
struct sockaddr_in6* sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = in6addr_any;
}
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Bind to localhost.
TEST_P(RawSocketTest, BindToLocalhost) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
}
// Bind to a different address.
TEST_P(RawSocketTest, BindToInvalid) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
struct sockaddr_storage bind_addr = addr_;
if (Family() == AF_INET) {
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&bind_addr);
sin->sin_addr = {1}; // 1.0.0.0 - An address that we can't bind to.
} else {
struct sockaddr_in6* sin6 =
reinterpret_cast<struct sockaddr_in6*>(&bind_addr);
memset(&sin6->sin6_addr.s6_addr, 0, sizeof(sin6->sin6_addr.s6_addr));
sin6->sin6_addr.s6_addr[0] = 1; // 1: - An address that we can't bind to.
}
ASSERT_THAT(bind(s_, reinterpret_cast<struct sockaddr*>(&bind_addr),
AddrLen()), SyscallFailsWithErrno(EADDRNOTAVAIL));
}
// Send and receive an packet.
TEST_P(RawSocketTest, SendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Arbitrary.
constexpr char kBuf[] = "TB12";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// We should be able to create multiple raw sockets for the same protocol and
// receive the same packet on both.
TEST_P(RawSocketTest, MultipleSocketReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int s2;
ASSERT_THAT(s2 = socket(Family(), SOCK_RAW, Protocol()), SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "TB10";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive it on socket 1.
std::vector<char> recv_buf1(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf1.data(), recv_buf1.size()));
// Receive it on socket 2.
std::vector<char> recv_buf2(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBufFrom(s2, recv_buf2.data(),
recv_buf2.size()));
EXPECT_EQ(memcmp(recv_buf1.data() + HdrLen(),
recv_buf2.data() + HdrLen(), sizeof(kBuf)),
0);
ASSERT_THAT(close(s2), SyscallSucceeds());
}
// Test that connect sends packets to the right place.
TEST_P(RawSocketTest, SendAndReceiveViaConnect) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "JH4";
ASSERT_THAT(send(s_, kBuf, sizeof(kBuf), 0),
SyscallSucceedsWithValue(sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Bind to localhost, then send and receive packets.
TEST_P(RawSocketTest, BindSendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "DR16";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Bind and connect to localhost and send/receive packets.
TEST_P(RawSocketTest, BindConnectSendAndReceive) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
// Arbitrary.
constexpr char kBuf[] = "DG88";
ASSERT_NO_FATAL_FAILURE(SendBuf(kBuf, sizeof(kBuf)));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(sizeof(kBuf) + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), kBuf, sizeof(kBuf)), 0);
}
// Check that setting SO_RCVBUF below min is clamped to the minimum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketRecvBufBelowMin) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Discover minimum receive buf size by trying to set it to zero.
// See:
// https://github.com/torvalds/linux/blob/a5dc8300df75e8b8384b4c82225f1e4a0b4d9b55/net/core/sock.c#L820
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
// Linux doubles the value so let's use a value that when doubled will still
// be smaller than min.
int below_min = min / 2 - 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &below_min, sizeof(below_min)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(min, val);
}
// Check that setting SO_RCVBUF above max is clamped to the maximum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketRecvBufAboveMax) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Discover max buf size by trying to set the largest possible buffer size.
constexpr int kRcvBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
int max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &max, &max_len),
SyscallSucceeds());
int above_max = max + 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &above_max, sizeof(above_max)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(max, val);
}
// Check that setting SO_RCVBUF min <= kRcvBufSz <= max is honored.
TEST_P(RawSocketTest, SetSocketRecvBuf) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int max = 0;
int min = 0;
{
// Discover max buf size by trying to set a really large buffer size.
constexpr int kRcvBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &max, &max_len),
SyscallSucceeds());
}
{
// Discover minimum buffer size by trying to set a zero size receive buffer
// size.
// See:
// https://github.com/torvalds/linux/blob/a5dc8300df75e8b8384b4c82225f1e4a0b4d9b55/net/core/sock.c#L820
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
int quarter_sz = min + (max - min) / 4;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &quarter_sz, sizeof(quarter_sz)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &val, &val_len),
SyscallSucceeds());
// Linux doubles the value set by SO_SNDBUF/SO_RCVBUF.
// TODO(gvisor.dev/issue/2926): Remove when Netstack matches linux behavior.
if (!IsRunningOnGvisor()) {
quarter_sz *= 2;
}
ASSERT_EQ(quarter_sz, val);
}
// Check that setting SO_SNDBUF below min is clamped to the minimum
// receive buffer size.
TEST_P(RawSocketTest, SetSocketSendBufBelowMin) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Discover minimum buffer size by trying to set it to zero.
constexpr int kSndBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &min, &min_len),
SyscallSucceeds());
// Linux doubles the value so let's use a value that when doubled will still
// be smaller than min.
int below_min = min / 2 - 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &below_min, sizeof(below_min)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(min, val);
}
// Check that setting SO_SNDBUF above max is clamped to the maximum
// send buffer size.
TEST_P(RawSocketTest, SetSocketSendBufAboveMax) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
// Discover maximum buffer size by trying to set it to a large value.
constexpr int kSndBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
int max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &max, &max_len),
SyscallSucceeds());
int above_max = max + 1;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &above_max, sizeof(above_max)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
ASSERT_EQ(max, val);
}
// Check that setting SO_SNDBUF min <= kSndBufSz <= max is honored.
TEST_P(RawSocketTest, SetSocketSendBuf) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int max = 0;
int min = 0;
{
// Discover maximum buffer size by trying to set it to a large value.
constexpr int kSndBufSz = 0xffffffff;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
max = 0;
socklen_t max_len = sizeof(max);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &max, &max_len),
SyscallSucceeds());
}
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kSndBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &kSndBufSz, sizeof(kSndBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &min, &min_len),
SyscallSucceeds());
}
int quarter_sz = min + (max - min) / 4;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_SNDBUF, &quarter_sz, sizeof(quarter_sz)),
SyscallSucceeds());
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_SNDBUF, &val, &val_len),
SyscallSucceeds());
quarter_sz *= 2;
ASSERT_EQ(quarter_sz, val);
}
// Test that receive buffer limits are not enforced when the recv buffer is
// empty.
TEST_P(RawSocketTest, RecvBufLimitsEmptyRecvBuffer) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
{
// Send data of size min and verify that it's received.
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(
memcmp(recv_buf.data() + HdrLen(), buf.data(), buf.size()),
0);
}
{
// Send data of size min + 1 and verify that its received. Both linux and
// Netstack accept a dgram that exceeds rcvBuf limits if the receive buffer
// is currently empty.
std::vector<char> buf(min + 1);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(
memcmp(recv_buf.data() + HdrLen(), buf.data(), buf.size()),
0);
}
}
TEST_P(RawSocketTest, RecvBufLimits) {
// TCP stack generates RSTs for unknown endpoints and it complicates the test
// as we have to deal with the RST packets as well. For testing the raw socket
// endpoints buffer limit enforcement we can just test for UDP.
//
// We don't use SKIP_IF here because root_test_runner explicitly fails if a
// test is skipped.
if (Protocol() == IPPROTO_TCP) {
return;
}
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
ASSERT_THAT(
bind(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
ASSERT_THAT(
connect(s_, reinterpret_cast<struct sockaddr*>(&addr_), AddrLen()),
SyscallSucceeds());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(
setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &kRcvBufSz, sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
// Now set the limit to min * 2.
int new_rcv_buf_sz = min * 4;
if (!IsRunningOnGvisor()) {
// Linux doubles the value specified so just set to min.
new_rcv_buf_sz = min * 2;
}
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_RCVBUF, &new_rcv_buf_sz,
sizeof(new_rcv_buf_sz)),
SyscallSucceeds());
int rcv_buf_sz = 0;
{
socklen_t rcv_buf_len = sizeof(rcv_buf_sz);
ASSERT_THAT(
getsockopt(s_, SOL_SOCKET, SO_RCVBUF, &rcv_buf_sz, &rcv_buf_len),
SyscallSucceeds());
}
// Set a receive timeout so that we don't block forever on reads if the test
// fails.
struct timeval tv {
.tv_sec = 1, .tv_usec = 0,
};
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)),
SyscallSucceeds());
{
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
int sent = 4;
if (IsRunningOnGvisor()) {
// Linux seems to drop the 4th packet even though technically it should
// fit in the receive buffer.
ASSERT_NO_FATAL_FAILURE(SendBuf(buf.data(), buf.size()));
sent++;
}
// Verify that the expected number of packets are available to be read.
for (int i = 0; i < sent - 1; i++) {
// Receive the packet and make sure it's identical.
std::vector<char> recv_buf(buf.size() + HdrLen());
ASSERT_NO_FATAL_FAILURE(ReceiveBuf(recv_buf.data(), recv_buf.size()));
EXPECT_EQ(memcmp(recv_buf.data() + HdrLen(), buf.data(),
buf.size()),
0);
}
// Assert that the last packet is dropped because the receive buffer should
// be full after the first four packets.
std::vector<char> recv_buf(buf.size() + HdrLen());
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(recv_buf.data()));
iov.iov_len = buf.size();
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(RetryEINTR(recvmsg)(s_, &msg, MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
void RawSocketTest::SendBuf(const char* buf, int buf_len) {
// It's safe to use const_cast here because sendmsg won't modify the iovec or
// address.
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(buf));
iov.iov_len = static_cast<size_t>(buf_len);
struct msghdr msg = {};
msg.msg_name = static_cast<void*>(&addr_);
msg.msg_namelen = AddrLen();
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(sendmsg(s_, &msg, 0), SyscallSucceedsWithValue(buf_len));
}
void RawSocketTest::ReceiveBuf(char* recv_buf, size_t recv_buf_len) {
ASSERT_NO_FATAL_FAILURE(ReceiveBufFrom(s_, recv_buf, recv_buf_len));
}
void RawSocketTest::ReceiveBufFrom(int sock, char* recv_buf,
size_t recv_buf_len) {
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(sock, recv_buf, recv_buf_len));
}
TEST_P(RawSocketTest, SetSocketDetachFilterNoInstalledFilter) {
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
if (IsRunningOnGvisor()) {
constexpr int val = 0;
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallSucceeds());
return;
}
constexpr int val = 0;
ASSERT_THAT(setsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallFailsWithErrno(ENOENT));
}
TEST_P(RawSocketTest, GetSocketDetachFilter) {
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(getsockopt(s_, SOL_SOCKET, SO_DETACH_FILTER, &val, &val_len),
SyscallFailsWithErrno(ENOPROTOOPT));
}
// AF_INET6+SOCK_RAW+IPPROTO_RAW sockets can be created, but not written to.
TEST(RawSocketTest, IPv6ProtoRaw) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_RAW),
SyscallSucceeds());
// Verify that writing yields EINVAL.
char buf[] = "This is such a weird little edge case";
struct sockaddr_in6 sin6 = {};
sin6.sin6_family = AF_INET6;
sin6.sin6_addr = in6addr_loopback;
ASSERT_THAT(sendto(sock, buf, sizeof(buf), 0 /* flags */,
reinterpret_cast<struct sockaddr*>(&sin6), sizeof(sin6)),
SyscallFailsWithErrno(EINVAL));
}
TEST(RawSocketTest, IPv6SendMsg) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_TCP),
SyscallSucceeds());
char kBuf[] = "hello";
struct iovec iov = {};
iov.iov_base = static_cast<void*>(const_cast<char*>(kBuf));
iov.iov_len = static_cast<size_t>(sizeof(kBuf));
struct sockaddr_storage addr = {};
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
struct msghdr msg = {};
msg.msg_name = static_cast<void*>(&addr);
msg.msg_namelen = sizeof(sockaddr_in);
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_flags = 0;
ASSERT_THAT(sendmsg(sock, &msg, 0), SyscallFailsWithErrno(EINVAL));
}
TEST_P(RawSocketTest, ConnectOnIPv6Socket) {
SKIP_IF(!ASSERT_NO_ERRNO_AND_VALUE(HaveCapability(CAP_NET_RAW)));
int sock;
ASSERT_THAT(sock = socket(AF_INET6, SOCK_RAW, IPPROTO_TCP),
SyscallSucceeds());
struct sockaddr_storage addr = {};
struct sockaddr_in* sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
ASSERT_THAT(connect(sock, reinterpret_cast<struct sockaddr*>(&addr),
sizeof(sockaddr_in6)),
SyscallFailsWithErrno(EAFNOSUPPORT));
}
INSTANTIATE_TEST_SUITE_P(
AllInetTests, RawSocketTest,
::testing::Combine(::testing::Values(IPPROTO_TCP, IPPROTO_UDP),
::testing::Values(AF_INET, AF_INET6)));
} // namespace
} // namespace testing
} // namespace gvisor