gvisor/test/syscalls/linux/socket_generic_stress.cc

300 lines
11 KiB
C++

// Copyright 2020 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <poll.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>
#include <array>
#include <string>
#include "gtest/gtest.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_split.h"
#include "absl/strings/string_view.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/syscalls/linux/ip_socket_test_util.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
constexpr char kRangeFile[] = "/proc/sys/net/ipv4/ip_local_port_range";
PosixErrorOr<int> NumPorts() {
int min = 0;
int max = 1 << 16;
// Read the ephemeral range from /proc.
ASSIGN_OR_RETURN_ERRNO(std::string rangefile, GetContents(kRangeFile));
const std::string err_msg =
absl::StrFormat("%s has invalid content: %s", kRangeFile, rangefile);
if (rangefile.back() != '\n') {
return PosixError(EINVAL, err_msg);
}
rangefile.pop_back();
std::vector<std::string> range =
absl::StrSplit(rangefile, absl::ByAnyChar("\t "));
if (range.size() < 2 || !absl::SimpleAtoi(range.front(), &min) ||
!absl::SimpleAtoi(range.back(), &max)) {
return PosixError(EINVAL, err_msg);
}
// If we can open as writable, limit the range.
if (!access(kRangeFile, W_OK)) {
ASSIGN_OR_RETURN_ERRNO(FileDescriptor fd,
Open(kRangeFile, O_WRONLY | O_TRUNC, 0));
max = min + 50;
const std::string small_range = absl::StrFormat("%d %d", min, max);
int n = write(fd.get(), small_range.c_str(), small_range.size());
if (n < 0) {
return PosixError(
errno,
absl::StrFormat("write(%d [%s], \"%s\", %d)", fd.get(), kRangeFile,
small_range.c_str(), small_range.size()));
}
}
return max - min;
}
// Test fixture for tests that apply to pairs of connected sockets.
using ConnectStressTest = SocketPairTest;
TEST_P(ConnectStressTest, Reset) {
const int nports = ASSERT_NO_ERRNO_AND_VALUE(NumPorts());
for (int i = 0; i < nports * 2; i++) {
const std::unique_ptr<SocketPair> sockets =
ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
// Send some data to ensure that the connection gets reset and the port gets
// released immediately. This avoids either end entering TIME-WAIT.
char sent_data[100] = {};
ASSERT_THAT(write(sockets->first_fd(), sent_data, sizeof(sent_data)),
SyscallSucceedsWithValue(sizeof(sent_data)));
// Poll the other FD to make sure that the data is in the receive buffer
// before closing it to ensure a RST is triggered.
const int kTimeout = 10000;
struct pollfd pfd = {
.fd = sockets->second_fd(),
.events = POLL_IN,
};
ASSERT_THAT(poll(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
}
}
// Tests that opening too many connections -- without closing them -- does lead
// to port exhaustion.
TEST_P(ConnectStressTest, TooManyOpen) {
const int nports = ASSERT_NO_ERRNO_AND_VALUE(NumPorts());
int err_num = 0;
std::vector<std::unique_ptr<SocketPair>> sockets =
std::vector<std::unique_ptr<SocketPair>>(nports);
for (int i = 0; i < nports * 2; i++) {
PosixErrorOr<std::unique_ptr<SocketPair>> socks = NewSocketPair();
if (!socks.ok()) {
err_num = socks.error().errno_value();
break;
}
sockets.push_back(std::move(socks).ValueOrDie());
}
ASSERT_EQ(err_num, EADDRINUSE);
}
INSTANTIATE_TEST_SUITE_P(
AllConnectedSockets, ConnectStressTest,
::testing::Values(IPv6UDPBidirectionalBindSocketPair(0),
IPv4UDPBidirectionalBindSocketPair(0),
DualStackUDPBidirectionalBindSocketPair(0),
// Without REUSEADDR, we get port exhaustion on Linux.
SetSockOpt(SOL_SOCKET, SO_REUSEADDR,
&kSockOptOn)(IPv6TCPAcceptBindSocketPair(0)),
SetSockOpt(SOL_SOCKET, SO_REUSEADDR,
&kSockOptOn)(IPv4TCPAcceptBindSocketPair(0)),
SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &kSockOptOn)(
DualStackTCPAcceptBindSocketPair(0))));
// Test fixture for tests that apply to pairs of connected sockets created with
// a persistent listener (if applicable).
class PersistentListenerConnectStressTest : public SocketPairTest {
protected:
PersistentListenerConnectStressTest() : slept_{false} {}
// NewSocketSleep is the same as NewSocketPair, but will sleep once (over the
// lifetime of the fixture) and retry if creation fails due to EADDRNOTAVAIL.
PosixErrorOr<std::unique_ptr<SocketPair>> NewSocketSleep() {
// We can't reuse a connection too close in time to its last use, as TCP
// uses the timestamp difference to disambiguate connections. With a
// sufficiently small port range, we'll cycle through too quickly, and TCP
// won't allow for connection reuse. Thus, we sleep the first time
// encountering EADDRINUSE to allow for that difference (1 second in
// gVisor).
PosixErrorOr<std::unique_ptr<SocketPair>> socks = NewSocketPair();
if (socks.ok()) {
return socks;
}
if (!slept_ && socks.error().errno_value() == EADDRNOTAVAIL) {
absl::SleepFor(absl::Milliseconds(1500));
slept_ = true;
return NewSocketPair();
}
return socks;
}
private:
bool slept_;
};
TEST_P(PersistentListenerConnectStressTest, ShutdownCloseFirst) {
const int nports = ASSERT_NO_ERRNO_AND_VALUE(NumPorts());
for (int i = 0; i < nports * 2; i++) {
std::unique_ptr<SocketPair> sockets =
ASSERT_NO_ERRNO_AND_VALUE(NewSocketSleep());
ASSERT_THAT(shutdown(sockets->first_fd(), SHUT_RDWR), SyscallSucceeds());
if (GetParam().type == SOCK_STREAM) {
// Poll the other FD to make sure that we see the FIN from the other
// side before closing the second_fd. This ensures that the first_fd
// enters TIME-WAIT and not second_fd.
const int kTimeout = 10000;
struct pollfd pfd = {
.fd = sockets->second_fd(),
.events = POLL_IN,
};
ASSERT_THAT(poll(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
}
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_RDWR), SyscallSucceeds());
}
}
TEST_P(PersistentListenerConnectStressTest, ShutdownCloseSecond) {
const int nports = ASSERT_NO_ERRNO_AND_VALUE(NumPorts());
for (int i = 0; i < nports * 2; i++) {
const std::unique_ptr<SocketPair> sockets =
ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
ASSERT_THAT(shutdown(sockets->second_fd(), SHUT_RDWR), SyscallSucceeds());
if (GetParam().type == SOCK_STREAM) {
// Poll the other FD to make sure that we see the FIN from the other
// side before closing the first_fd. This ensures that the second_fd
// enters TIME-WAIT and not first_fd.
const int kTimeout = 10000;
struct pollfd pfd = {
.fd = sockets->first_fd(),
.events = POLL_IN,
};
ASSERT_THAT(poll(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
}
ASSERT_THAT(shutdown(sockets->first_fd(), SHUT_RDWR), SyscallSucceeds());
}
}
TEST_P(PersistentListenerConnectStressTest, Close) {
const int nports = ASSERT_NO_ERRNO_AND_VALUE(NumPorts());
for (int i = 0; i < nports * 2; i++) {
std::unique_ptr<SocketPair> sockets =
ASSERT_NO_ERRNO_AND_VALUE(NewSocketSleep());
}
}
INSTANTIATE_TEST_SUITE_P(
AllConnectedSockets, PersistentListenerConnectStressTest,
::testing::Values(
IPv6UDPBidirectionalBindSocketPair(0),
IPv4UDPBidirectionalBindSocketPair(0),
DualStackUDPBidirectionalBindSocketPair(0),
// Without REUSEADDR, we get port exhaustion on Linux.
SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &kSockOptOn)(
IPv6TCPAcceptBindPersistentListenerSocketPair(0)),
SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &kSockOptOn)(
IPv4TCPAcceptBindPersistentListenerSocketPair(0)),
SetSockOpt(SOL_SOCKET, SO_REUSEADDR, &kSockOptOn)(
DualStackTCPAcceptBindPersistentListenerSocketPair(0))));
using DataTransferStressTest = SocketPairTest;
TEST_P(DataTransferStressTest, BigDataTransfer) {
// TODO(b/165912341): These are too slow on KVM platform with nested virt.
SKIP_IF(GvisorPlatform() == Platform::kKVM);
const std::unique_ptr<SocketPair> sockets =
ASSERT_NO_ERRNO_AND_VALUE(NewSocketPair());
int client_fd = sockets->first_fd();
int server_fd = sockets->second_fd();
ScopedThread echo([server_fd]() {
std::array<uint8_t, 1024> buf;
for (;;) {
ssize_t r = read(server_fd, buf.data(), buf.size());
ASSERT_THAT(r, SyscallSucceeds());
if (r == 0) {
break;
}
for (size_t i = 0; i < r;) {
ssize_t w = write(server_fd, buf.data() + i, r - i);
ASSERT_GE(w, 0);
i += w;
}
}
ASSERT_THAT(shutdown(server_fd, SHUT_WR), SyscallSucceeds());
});
const std::string chunk = "Though this upload be but little, it is fierce.";
std::string big_string;
while (big_string.size() < 31 << 20) {
big_string += chunk;
}
absl::string_view data = big_string;
ScopedThread writer([client_fd, data]() {
absl::string_view view = data;
while (!view.empty()) {
ssize_t n = write(client_fd, view.data(), view.size());
ASSERT_GE(n, 0);
view = view.substr(n);
}
ASSERT_THAT(shutdown(client_fd, SHUT_WR), SyscallSucceeds());
});
std::string buf;
buf.resize(1 << 20);
while (!data.empty()) {
ssize_t n = read(client_fd, buf.data(), buf.size());
ASSERT_GE(n, 0);
for (size_t i = 0; i < n; i += chunk.size()) {
size_t c = std::min(chunk.size(), n - i);
ASSERT_EQ(buf.substr(i, c), data.substr(i, c)) << "offset " << i;
}
data = data.substr(n);
}
// Should read EOF now.
ASSERT_THAT(read(client_fd, buf.data(), buf.size()),
SyscallSucceedsWithValue(0));
}
INSTANTIATE_TEST_SUITE_P(
AllConnectedSockets, DataTransferStressTest,
::testing::Values(IPv6TCPAcceptBindPersistentListenerSocketPair(0),
IPv4TCPAcceptBindPersistentListenerSocketPair(0),
DualStackTCPAcceptBindPersistentListenerSocketPair(0)));
} // namespace testing
} // namespace gvisor