gvisor/test/syscalls/linux/udp_socket.cc

2114 lines
72 KiB
C++

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <arpa/inet.h>
#include <fcntl.h>
#include <netinet/icmp6.h>
#include <netinet/ip_icmp.h>
#include <ctime>
#ifdef __linux__
#include <linux/errqueue.h>
#include <linux/filter.h>
#endif // __linux__
#include <netinet/in.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include "absl/strings/str_format.h"
#ifndef SIOCGSTAMP
#include <linux/sockios.h>
#endif
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/syscalls/linux/ip_socket_test_util.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Fixture for tests parameterized by the address family to use (AF_INET and
// AF_INET6) when creating sockets.
class UdpSocketTest
: public ::testing::TestWithParam<gvisor::testing::AddressFamily> {
protected:
// Creates two sockets that will be used by test cases.
void SetUp() override;
// Binds the socket bind_ to the loopback and updates bind_addr_.
PosixError BindLoopback();
// Binds the socket bind_ to Any and updates bind_addr_.
PosixError BindAny();
// Binds given socket to address addr and updates.
PosixError BindSocket(int socket, struct sockaddr* addr);
// Return initialized Any address to port 0.
struct sockaddr_storage InetAnyAddr();
// Return initialized Loopback address to port 0.
struct sockaddr_storage InetLoopbackAddr();
// Disconnects socket sockfd.
void Disconnect(int sockfd);
// Get family for the test.
int GetFamily();
// Socket used by Bind methods
FileDescriptor bind_;
// Second socket used for tests.
FileDescriptor sock_;
// Address for bind_ socket.
struct sockaddr* bind_addr_;
// Initialized to the length based on GetFamily().
socklen_t addrlen_;
// Storage for bind_addr_.
struct sockaddr_storage bind_addr_storage_;
private:
// Helper to initialize addrlen_ for the test case.
socklen_t GetAddrLength();
};
// Gets a pointer to the port component of the given address.
uint16_t* Port(struct sockaddr_storage* addr) {
switch (addr->ss_family) {
case AF_INET: {
auto sin = reinterpret_cast<struct sockaddr_in*>(addr);
return &sin->sin_port;
}
case AF_INET6: {
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(addr);
return &sin6->sin6_port;
}
}
return nullptr;
}
// Sets addr port to "port".
void SetPort(struct sockaddr_storage* addr, uint16_t port) {
switch (addr->ss_family) {
case AF_INET: {
auto sin = reinterpret_cast<struct sockaddr_in*>(addr);
sin->sin_port = port;
break;
}
case AF_INET6: {
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(addr);
sin6->sin6_port = port;
break;
}
}
}
void UdpSocketTest::SetUp() {
addrlen_ = GetAddrLength();
bind_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
memset(&bind_addr_storage_, 0, sizeof(bind_addr_storage_));
bind_addr_ = AsSockAddr(&bind_addr_storage_);
sock_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
}
int UdpSocketTest::GetFamily() {
if (GetParam() == AddressFamily::kIpv4) {
return AF_INET;
}
return AF_INET6;
}
PosixError UdpSocketTest::BindLoopback() {
bind_addr_storage_ = InetLoopbackAddr();
struct sockaddr* bind_addr_ = AsSockAddr(&bind_addr_storage_);
return BindSocket(bind_.get(), bind_addr_);
}
PosixError UdpSocketTest::BindAny() {
bind_addr_storage_ = InetAnyAddr();
struct sockaddr* bind_addr_ = AsSockAddr(&bind_addr_storage_);
return BindSocket(bind_.get(), bind_addr_);
}
PosixError UdpSocketTest::BindSocket(int socket, struct sockaddr* addr) {
socklen_t len = sizeof(bind_addr_storage_);
// Bind, then check that we get the right address.
RETURN_ERROR_IF_SYSCALL_FAIL(bind(socket, addr, addrlen_));
RETURN_ERROR_IF_SYSCALL_FAIL(getsockname(socket, addr, &len));
if (addrlen_ != len) {
return PosixError(
EINVAL,
absl::StrFormat("getsockname len: %u expected: %u", len, addrlen_));
}
return PosixError(0);
}
socklen_t UdpSocketTest::GetAddrLength() {
struct sockaddr_storage addr;
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
return sizeof(*sin);
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
return sizeof(*sin6);
}
sockaddr_storage UdpSocketTest::InetAnyAddr() {
struct sockaddr_storage addr;
memset(&addr, 0, sizeof(addr));
AsSockAddr(&addr)->sa_family = GetFamily();
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_addr.s_addr = htonl(INADDR_ANY);
sin->sin_port = htons(0);
return addr;
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_addr = IN6ADDR_ANY_INIT;
sin6->sin6_port = htons(0);
return addr;
}
sockaddr_storage UdpSocketTest::InetLoopbackAddr() {
struct sockaddr_storage addr;
memset(&addr, 0, sizeof(addr));
AsSockAddr(&addr)->sa_family = GetFamily();
if (GetFamily() == AF_INET) {
auto sin = reinterpret_cast<struct sockaddr_in*>(&addr);
sin->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
sin->sin_port = htons(0);
return addr;
}
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&addr);
sin6->sin6_addr = in6addr_loopback;
sin6->sin6_port = htons(0);
return addr;
}
void UdpSocketTest::Disconnect(int sockfd) {
sockaddr_storage addr_storage = InetAnyAddr();
sockaddr* addr = AsSockAddr(&addr_storage);
socklen_t addrlen = sizeof(addr_storage);
addr->sa_family = AF_UNSPEC;
ASSERT_THAT(connect(sockfd, addr, addrlen), SyscallSucceeds());
// Check that after disconnect the socket is bound to the ANY address.
EXPECT_THAT(getsockname(sockfd, addr, &addrlen), SyscallSucceeds());
if (GetParam() == AddressFamily::kIpv4) {
auto addr_out = reinterpret_cast<struct sockaddr_in*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(addr_out->sin_addr.s_addr, htonl(INADDR_ANY));
} else {
auto addr_out = reinterpret_cast<struct sockaddr_in6*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
struct in6_addr loopback = IN6ADDR_ANY_INIT;
EXPECT_EQ(memcmp(&addr_out->sin6_addr, &loopback, sizeof(in6_addr)), 0);
}
}
TEST_P(UdpSocketTest, Creation) {
FileDescriptor sock =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
EXPECT_THAT(close(sock.release()), SyscallSucceeds());
sock = ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, 0));
EXPECT_THAT(close(sock.release()), SyscallSucceeds());
ASSERT_THAT(socket(GetFamily(), SOCK_STREAM, IPPROTO_UDP), SyscallFails());
}
TEST_P(UdpSocketTest, Getsockname) {
// Check that we're not bound.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
struct sockaddr_storage any = InetAnyAddr();
EXPECT_EQ(memcmp(&addr, AsSockAddr(&any), addrlen_), 0);
ASSERT_NO_ERRNO(BindLoopback());
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, Getpeername) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that we're not connected.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
// Connect, then check that we get the right address.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, SendNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Do send & write, they must fail.
char buf[512];
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(EDESTADDRREQ));
EXPECT_THAT(write(sock_.get(), buf, sizeof(buf)),
SyscallFailsWithErrno(EDESTADDRREQ));
// Use sendto.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Check that we're bound now.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr), 0);
}
TEST_P(UdpSocketTest, ConnectBinds) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're bound now.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr), 0);
}
TEST_P(UdpSocketTest, ReceiveNotBound) {
char buf[512];
EXPECT_THAT(recv(sock_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, Bind) {
ASSERT_NO_ERRNO(BindLoopback());
// Try to bind again.
EXPECT_THAT(bind(bind_.get(), bind_addr_, addrlen_),
SyscallFailsWithErrno(EINVAL));
// Check that we're still bound to the original address.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(bind_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, bind_addr_, addrlen_), 0);
}
TEST_P(UdpSocketTest, BindInUse) {
ASSERT_NO_ERRNO(BindLoopback());
// Try to bind again.
EXPECT_THAT(bind(sock_.get(), bind_addr_, addrlen_),
SyscallFailsWithErrno(EADDRINUSE));
}
TEST_P(UdpSocketTest, ConnectWriteToInvalidPort) {
// Discover a free unused port by creating a new UDP socket, binding it
// recording the just bound port and closing it. This is not guaranteed as it
// can still race with other port UDP sockets trying to bind a port at the
// same time.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
socklen_t addrlen = sizeof(addr_storage);
struct sockaddr* addr = AsSockAddr(&addr_storage);
FileDescriptor s =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(bind(s.get(), addr, addrlen), SyscallSucceeds());
ASSERT_THAT(getsockname(s.get(), addr, &addrlen), SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr_storage), 0);
ASSERT_THAT(close(s.release()), SyscallSucceeds());
// Now connect to the port that we just released. This should generate an
// ECONNREFUSED error.
ASSERT_THAT(connect(sock_.get(), addr, addrlen_), SyscallSucceeds());
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Now verify that we got an ICMP error back of ECONNREFUSED.
int err;
socklen_t optlen = sizeof(err);
ASSERT_THAT(getsockopt(sock_.get(), SOL_SOCKET, SO_ERROR, &err, &optlen),
SyscallSucceeds());
ASSERT_EQ(err, ECONNREFUSED);
ASSERT_EQ(optlen, sizeof(err));
}
TEST_P(UdpSocketTest, ConnectSimultaneousWriteToInvalidPort) {
// Discover a free unused port by creating a new UDP socket, binding it
// recording the just bound port and closing it. This is not guaranteed as it
// can still race with other port UDP sockets trying to bind a port at the
// same time.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
socklen_t addrlen = sizeof(addr_storage);
struct sockaddr* addr = AsSockAddr(&addr_storage);
FileDescriptor s =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(bind(s.get(), addr, addrlen), SyscallSucceeds());
ASSERT_THAT(getsockname(s.get(), addr, &addrlen), SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_NE(*Port(&addr_storage), 0);
ASSERT_THAT(close(s.release()), SyscallSucceeds());
// Now connect to the port that we just released.
ScopedThread t([&] {
ASSERT_THAT(connect(sock_.get(), addr, addrlen_), SyscallSucceeds());
});
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
t.Join();
}
TEST_P(UdpSocketTest, ReceiveAfterConnect) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send from sock_ to bind_
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, ReceiveAfterDisconnect) {
ASSERT_NO_ERRNO(BindLoopback());
for (int i = 0; i < 2; i++) {
// Connet sock_ to bound address.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
// Send from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(
sendto(bind_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), addrlen),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
// Disconnect sock_.
struct sockaddr unspec = {};
unspec.sa_family = AF_UNSPEC;
ASSERT_THAT(connect(sock_.get(), &unspec, sizeof(unspec.sa_family)),
SyscallSucceeds());
}
}
TEST_P(UdpSocketTest, Connect) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're connected to the right peer.
struct sockaddr_storage peer;
socklen_t peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind_addr_, addrlen_), 0);
// Try to bind after connect.
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(bind(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallFailsWithErrno(EINVAL));
struct sockaddr_storage bind2_storage = InetLoopbackAddr();
struct sockaddr* bind2_addr = AsSockAddr(&bind2_storage);
FileDescriptor bind2 =
ASSERT_NO_ERRNO_AND_VALUE(Socket(GetFamily(), SOCK_DGRAM, IPPROTO_UDP));
ASSERT_NO_ERRNO(BindSocket(bind2.get(), bind2_addr));
// Try to connect again.
EXPECT_THAT(connect(sock_.get(), bind2_addr, addrlen_), SyscallSucceeds());
// Check that peer name changed.
peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind2_addr, addrlen_), 0);
}
TEST_P(UdpSocketTest, ConnectAnyZero) {
// TODO(138658473): Enable when we can connect to port 0 with gVisor.
SKIP_IF(IsRunningOnGvisor());
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, ConnectAnyWithPort) {
ASSERT_NO_ERRNO(BindAny());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
}
TEST_P(UdpSocketTest, DisconnectAfterConnectAny) {
// TODO(138658473): Enable when we can connect to port 0 with gVisor.
SKIP_IF(IsRunningOnGvisor());
struct sockaddr_storage any = InetAnyAddr();
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&any), addrlen_),
SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
Disconnect(sock_.get());
}
TEST_P(UdpSocketTest, DisconnectAfterConnectAnyWithPort) {
ASSERT_NO_ERRNO(BindAny());
EXPECT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(*Port(&bind_addr_storage_), *Port(&addr));
Disconnect(sock_.get());
}
TEST_P(UdpSocketTest, DisconnectAfterBind) {
ASSERT_NO_ERRNO(BindLoopback());
// Bind to the next port above bind_.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), addr));
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct sockaddr_storage unspec = {};
unspec.ss_family = AF_UNSPEC;
EXPECT_THAT(
connect(sock_.get(), AsSockAddr(&unspec), sizeof(unspec.ss_family)),
SyscallSucceeds());
// Check that we're still bound.
socklen_t addrlen = sizeof(unspec);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&unspec), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(addr, &unspec, addrlen_), 0);
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), addr, &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, BindToAnyConnnectToLocalhost) {
ASSERT_NO_ERRNO(BindAny());
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
socklen_t addrlen = sizeof(addr);
// Connect the socket.
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
EXPECT_THAT(getsockname(bind_.get(), addr, &addrlen), SyscallSucceeds());
// If the socket is bound to ANY and connected to a loopback address,
// getsockname() has to return the loopback address.
if (GetParam() == AddressFamily::kIpv4) {
auto addr_out = reinterpret_cast<struct sockaddr_in*>(addr);
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(addr_out->sin_addr.s_addr, htonl(INADDR_LOOPBACK));
} else {
auto addr_out = reinterpret_cast<struct sockaddr_in6*>(addr);
struct in6_addr loopback = IN6ADDR_LOOPBACK_INIT;
EXPECT_EQ(addrlen, sizeof(*addr_out));
EXPECT_EQ(memcmp(&addr_out->sin6_addr, &loopback, sizeof(in6_addr)), 0);
}
}
TEST_P(UdpSocketTest, DisconnectAfterBindToAny) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage any_storage = InetAnyAddr();
struct sockaddr* any = AsSockAddr(&any_storage);
SetPort(&any_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), any));
// Connect the socket.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
Disconnect(sock_.get());
// Check that we're still bound.
struct sockaddr_storage addr;
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(memcmp(&addr, any, addrlen), 0);
addrlen = sizeof(addr);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, Disconnect) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage any_storage = InetAnyAddr();
struct sockaddr* any = AsSockAddr(&any_storage);
SetPort(&any_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_NO_ERRNO(BindSocket(sock_.get(), any));
for (int i = 0; i < 2; i++) {
// Try to connect again.
EXPECT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Check that we're connected to the right peer.
struct sockaddr_storage peer;
socklen_t peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallSucceeds());
EXPECT_EQ(peerlen, addrlen_);
EXPECT_EQ(memcmp(&peer, bind_addr_, addrlen_), 0);
// Try to disconnect.
struct sockaddr_storage addr = {};
addr.ss_family = AF_UNSPEC;
EXPECT_THAT(connect(sock_.get(), AsSockAddr(&addr), sizeof(addr.ss_family)),
SyscallSucceeds());
peerlen = sizeof(peer);
EXPECT_THAT(getpeername(sock_.get(), AsSockAddr(&peer), &peerlen),
SyscallFailsWithErrno(ENOTCONN));
// Check that we're still bound.
socklen_t addrlen = sizeof(addr);
EXPECT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &addrlen),
SyscallSucceeds());
EXPECT_EQ(addrlen, addrlen_);
EXPECT_EQ(*Port(&addr), *Port(&any_storage));
}
}
TEST_P(UdpSocketTest, ConnectBadAddress) {
struct sockaddr addr = {};
addr.sa_family = GetFamily();
ASSERT_THAT(connect(sock_.get(), &addr, sizeof(addr.sa_family)),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(UdpSocketTest, SendToAddressOtherThanConnected) {
ASSERT_NO_ERRNO(BindLoopback());
struct sockaddr_storage addr_storage = InetAnyAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send to a different destination than we're connected to.
char buf[512];
EXPECT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, addr, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST_P(UdpSocketTest, ConnectAndSendNoReceiver) {
ASSERT_NO_ERRNO(BindLoopback());
// Close the socket to release the port so that we get an ICMP error.
ASSERT_THAT(close(bind_.release()), SyscallSucceeds());
// Connect to loopback:bind_addr_ which should *hopefully* not be bound by an
// UDP socket. There is no easy way to ensure that the UDP port is not bound
// by another conncurrently running test. *This is potentially flaky*.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[512];
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
constexpr int kTimeout = 1000;
// Poll to make sure we get the ICMP error back before issuing more writes.
struct pollfd pfd = {sock_.get(), POLLERR, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
// Next write should fail with ECONNREFUSED due to the ICMP error generated in
// response to the previous write.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(ECONNREFUSED));
// The next write should succeed again since the last write call would have
// retrieved and cleared the socket error.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0), SyscallSucceeds());
// Poll to make sure we get the ICMP error back before issuing more writes.
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, kTimeout), SyscallSucceedsWithValue(1));
// Next write should fail with ECONNREFUSED due to the ICMP error generated in
// response to the previous write.
ASSERT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallFailsWithErrno(ECONNREFUSED));
}
#ifdef __linux__
TEST_P(UdpSocketTest, RecvErrorConnRefused) {
// We will simulate an ICMP error and verify that we do receive that error via
// recvmsg(MSG_ERRQUEUE).
ASSERT_NO_ERRNO(BindLoopback());
// Close the socket to release the port so that we get an ICMP error.
ASSERT_THAT(close(bind_.release()), SyscallSucceeds());
// Set IP_RECVERR socket option to enable error queueing.
int v = kSockOptOn;
socklen_t optlen = sizeof(v);
int opt_level = SOL_IP;
int opt_type = IP_RECVERR;
if (GetParam() != AddressFamily::kIpv4) {
opt_level = SOL_IPV6;
opt_type = IPV6_RECVERR;
}
ASSERT_THAT(setsockopt(sock_.get(), opt_level, opt_type, &v, optlen),
SyscallSucceeds());
// Connect to loopback:bind_addr_ which should *hopefully* not be bound by an
// UDP socket. There is no easy way to ensure that the UDP port is not bound
// by another conncurrently running test. *This is potentially flaky*.
const int kBufLen = 300;
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[kBufLen];
RandomizeBuffer(buf, sizeof(buf));
// Send from sock_ to an unbound port. This should cause ECONNREFUSED.
EXPECT_THAT(send(sock_.get(), buf, sizeof(buf), 0),
SyscallSucceedsWithValue(sizeof(buf)));
// Dequeue error using recvmsg(MSG_ERRQUEUE).
char got[kBufLen];
struct iovec iov;
iov.iov_base = reinterpret_cast<void*>(got);
iov.iov_len = kBufLen;
size_t control_buf_len = CMSG_SPACE(sizeof(sock_extended_err) + addrlen_);
char* control_buf = static_cast<char*>(calloc(1, control_buf_len));
struct sockaddr_storage remote;
memset(&remote, 0, sizeof(remote));
struct msghdr msg = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_flags = 0;
msg.msg_control = control_buf;
msg.msg_controllen = control_buf_len;
msg.msg_name = reinterpret_cast<void*>(&remote);
msg.msg_namelen = addrlen_;
ASSERT_THAT(recvmsg(sock_.get(), &msg, MSG_ERRQUEUE),
SyscallSucceedsWithValue(kBufLen));
// Check the contents of msg.
EXPECT_EQ(memcmp(got, buf, sizeof(buf)), 0); // iovec check
// TODO(b/176251997): The next check fails on the gvisor platform due to the
// kernel bug.
if (!IsRunningWithHostinet() || GvisorPlatform() == Platform::kPtrace ||
GvisorPlatform() == Platform::kKVM ||
GvisorPlatform() == Platform::kNative)
EXPECT_NE(msg.msg_flags & MSG_ERRQUEUE, 0);
EXPECT_EQ(memcmp(&remote, bind_addr_, addrlen_), 0);
// Check the contents of the control message.
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(CMSG_NXTHDR(&msg, cmsg), nullptr);
EXPECT_EQ(cmsg->cmsg_level, opt_level);
EXPECT_EQ(cmsg->cmsg_type, opt_type);
// Check the contents of socket error.
struct sock_extended_err* sock_err =
(struct sock_extended_err*)CMSG_DATA(cmsg);
EXPECT_EQ(sock_err->ee_errno, ECONNREFUSED);
if (GetParam() == AddressFamily::kIpv4) {
EXPECT_EQ(sock_err->ee_origin, SO_EE_ORIGIN_ICMP);
EXPECT_EQ(sock_err->ee_type, ICMP_DEST_UNREACH);
EXPECT_EQ(sock_err->ee_code, ICMP_PORT_UNREACH);
} else {
EXPECT_EQ(sock_err->ee_origin, SO_EE_ORIGIN_ICMP6);
EXPECT_EQ(sock_err->ee_type, ICMP6_DST_UNREACH);
EXPECT_EQ(sock_err->ee_code, ICMP6_DST_UNREACH_NOPORT);
}
// Now verify that the socket error was cleared by recvmsg(MSG_ERRQUEUE).
int err;
optlen = sizeof(err);
ASSERT_THAT(getsockopt(sock_.get(), SOL_SOCKET, SO_ERROR, &err, &optlen),
SyscallSucceeds());
ASSERT_EQ(err, 0);
ASSERT_EQ(optlen, sizeof(err));
}
#endif // __linux__
TEST_P(UdpSocketTest, ZerolengthWriteAllowed) {
// TODO(gvisor.dev/issue/1202): Hostinet does not support zero length writes.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
char buf[3];
// Send zero length packet from bind_ to sock_.
ASSERT_THAT(write(bind_.get(), buf, 0), SyscallSucceedsWithValue(0));
struct pollfd pfd = {sock_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout*/ 1000),
SyscallSucceedsWithValue(1));
// Receive the packet.
char received[3];
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, ZerolengthWriteAllowedNonBlockRead) {
// TODO(gvisor.dev/issue/1202): Hostinet does not support zero length writes.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Set sock to non-blocking.
int opts = 0;
ASSERT_THAT(opts = fcntl(sock_.get(), F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(sock_.get(), F_SETFL, opts | O_NONBLOCK),
SyscallSucceeds());
char buf[3];
// Send zero length packet from bind_ to sock_.
ASSERT_THAT(write(bind_.get(), buf, 0), SyscallSucceedsWithValue(0));
struct pollfd pfd = {sock_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// Receive the packet.
char received[3];
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallSucceedsWithValue(0));
EXPECT_THAT(read(sock_.get(), received, sizeof(received)),
SyscallFailsWithErrno(EAGAIN));
}
TEST_P(UdpSocketTest, SendAndReceiveNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Send some data to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, SendAndReceiveConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data.
char received[sizeof(buf)];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, ReceiveFromNotConnected) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+2.
struct sockaddr_storage addr2_storage = InetLoopbackAddr();
struct sockaddr* addr2 = AsSockAddr(&addr2_storage);
SetPort(&addr2_storage, *Port(&bind_addr_storage_) + 2);
ASSERT_THAT(bind(sock_.get(), addr2, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Check that the data isn't received because it was sent from a different
// address than we're connected.
EXPECT_THAT(recv(sock_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReceiveBeforeConnect) {
ASSERT_NO_ERRNO(BindLoopback());
// Bind sock to loopback:bind_addr_port+2.
struct sockaddr_storage addr2_storage = InetLoopbackAddr();
struct sockaddr* addr2 = AsSockAddr(&addr2_storage);
SetPort(&addr2_storage, *Port(&bind_addr_storage_) + 2);
ASSERT_THAT(bind(sock_.get(), addr2, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Receive the data. It works because it was sent before the connect.
char received[sizeof(buf)];
EXPECT_THAT(
RecvTimeout(bind_.get(), received, sizeof(received), 1 /*timeout*/),
IsPosixErrorOkAndHolds(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
// Send again. This time it should not be received.
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_THAT(recv(bind_.get(), buf, sizeof(buf), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReceiveFrom) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind sock to loopback:bind_addr_port+1.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
// Send some data from sock to bind_.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
// Receive the data and sender address.
char received[sizeof(buf)];
struct sockaddr_storage addr2;
socklen_t addr2len = sizeof(addr2);
EXPECT_THAT(recvfrom(bind_.get(), received, sizeof(received), 0,
AsSockAddr(&addr2), &addr2len),
SyscallSucceedsWithValue(sizeof(received)));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
EXPECT_EQ(addr2len, addrlen_);
EXPECT_EQ(memcmp(addr, &addr2, addrlen_), 0);
}
TEST_P(UdpSocketTest, Listen) {
ASSERT_THAT(listen(sock_.get(), SOMAXCONN),
SyscallFailsWithErrno(EOPNOTSUPP));
}
TEST_P(UdpSocketTest, Accept) {
ASSERT_THAT(accept(sock_.get(), nullptr, nullptr),
SyscallFailsWithErrno(EOPNOTSUPP));
}
// This test validates that a read shutdown with pending data allows the read
// to proceed with the data before returning EAGAIN.
TEST_P(UdpSocketTest, ReadShutdownNonblockPendingData) {
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
// Bind to loopback:bind_addr_port+1 and connect to bind_addr_.
ASSERT_THAT(bind(sock_.get(), addr, addrlen_), SyscallSucceeds());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Verify that we get EWOULDBLOCK when there is nothing to read.
char received[512];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
const char* buf = "abc";
EXPECT_THAT(write(sock_.get(), buf, 3), SyscallSucceedsWithValue(3));
int opts = 0;
ASSERT_THAT(opts = fcntl(bind_.get(), F_GETFL), SyscallSucceeds());
ASSERT_THAT(fcntl(bind_.get(), F_SETFL, opts | O_NONBLOCK),
SyscallSucceeds());
ASSERT_THAT(opts = fcntl(bind_.get(), F_GETFL), SyscallSucceeds());
ASSERT_NE(opts & O_NONBLOCK, 0);
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// We should get the data even though read has been shutdown.
EXPECT_THAT(RecvTimeout(bind_.get(), received, 2 /*buf_size*/, 1 /*timeout*/),
IsPosixErrorOkAndHolds(2));
// Because we read less than the entire packet length, since it's a packet
// based socket any subsequent reads should return EWOULDBLOCK.
EXPECT_THAT(recv(bind_.get(), received, 1, 0),
SyscallFailsWithErrno(EWOULDBLOCK));
}
// This test is validating that even after a socket is shutdown if it's
// reconnected it will reset the shutdown state.
TEST_P(UdpSocketTest, ReadShutdownSameSocketResetsShutdownState) {
char received[512];
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then try to shutdown again.
ASSERT_NO_ERRNO(BindLoopback());
// Connect to loopback:bind_addr_port+1.
struct sockaddr_storage addr_storage = InetLoopbackAddr();
struct sockaddr* addr = AsSockAddr(&addr_storage);
SetPort(&addr_storage, *Port(&bind_addr_storage_) + 1);
ASSERT_THAT(connect(bind_.get(), addr, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST_P(UdpSocketTest, ReadShutdown) {
// TODO(gvisor.dev/issue/1202): Calling recv() after shutdown without
// MSG_DONTWAIT blocks indefinitely.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
char received[512];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallFailsWithErrno(ENOTCONN));
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then try to shutdown again.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, ReadShutdownDifferentThread) {
// TODO(gvisor.dev/issue/1202): Calling recv() after shutdown without
// MSG_DONTWAIT blocks indefinitely.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
char received[512];
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Connect the socket, then shutdown from another thread.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(recv(sock_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
ScopedThread t([&] {
absl::SleepFor(absl::Milliseconds(200));
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
});
EXPECT_THAT(RetryEINTR(recv)(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
t.Join();
EXPECT_THAT(RetryEINTR(recv)(sock_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(0));
}
TEST_P(UdpSocketTest, WriteShutdown) {
ASSERT_NO_ERRNO(BindLoopback());
EXPECT_THAT(shutdown(sock_.get(), SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
EXPECT_THAT(shutdown(sock_.get(), SHUT_WR), SyscallSucceeds());
}
TEST_P(UdpSocketTest, SynchronousReceive) {
ASSERT_NO_ERRNO(BindLoopback());
// Send some data to bind_ from another thread.
char buf[512];
RandomizeBuffer(buf, sizeof(buf));
// Receive the data prior to actually starting the other thread.
char received[512];
EXPECT_THAT(
RetryEINTR(recv)(bind_.get(), received, sizeof(received), MSG_DONTWAIT),
SyscallFailsWithErrno(EWOULDBLOCK));
// Start the thread.
ScopedThread t([&] {
absl::SleepFor(absl::Milliseconds(200));
ASSERT_THAT(sendto(sock_.get(), buf, sizeof(buf), 0, this->bind_addr_,
this->addrlen_),
SyscallSucceedsWithValue(sizeof(buf)));
});
EXPECT_THAT(RetryEINTR(recv)(bind_.get(), received, sizeof(received), 0),
SyscallSucceedsWithValue(512));
EXPECT_EQ(memcmp(buf, received, sizeof(buf)), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_SendRecv) {
ASSERT_NO_ERRNO(BindLoopback());
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, psize, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(psize));
}
// Receive the data as 3 separate packets.
char received[6 * psize];
for (int i = 0; i < 3; ++i) {
EXPECT_THAT(recv(bind_.get(), received + i * psize, 3 * psize, 0),
SyscallSucceedsWithValue(psize));
}
EXPECT_EQ(memcmp(buf, received, 3 * psize), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_WritevReadv) {
ASSERT_NO_ERRNO(BindLoopback());
// Direct writes from sock to bind_.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Send 2 packets from sock to bind_, where each packet's data consists of
// 2 discontiguous iovecs.
constexpr size_t kPieceSize = 100;
char buf[4 * kPieceSize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 2; i++) {
struct iovec iov[2];
for (int j = 0; j < 2; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(buf) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
ASSERT_THAT(writev(sock_.get(), iov, 2),
SyscallSucceedsWithValue(2 * kPieceSize));
}
// Receive the data as 2 separate packets.
char received[6 * kPieceSize];
for (int i = 0; i < 2; i++) {
struct iovec iov[3];
for (int j = 0; j < 3; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(received) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
ASSERT_THAT(readv(bind_.get(), iov, 3),
SyscallSucceedsWithValue(2 * kPieceSize));
}
EXPECT_EQ(memcmp(buf, received, 4 * kPieceSize), 0);
}
TEST_P(UdpSocketTest, BoundaryPreserved_SendMsgRecvMsg) {
ASSERT_NO_ERRNO(BindLoopback());
// Send 2 packets from sock to bind_, where each packet's data consists of
// 2 discontiguous iovecs.
constexpr size_t kPieceSize = 100;
char buf[4 * kPieceSize];
RandomizeBuffer(buf, sizeof(buf));
for (int i = 0; i < 2; i++) {
struct iovec iov[2];
for (int j = 0; j < 2; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(buf) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
struct msghdr msg = {};
msg.msg_name = bind_addr_;
msg.msg_namelen = addrlen_;
msg.msg_iov = iov;
msg.msg_iovlen = 2;
ASSERT_THAT(sendmsg(sock_.get(), &msg, 0),
SyscallSucceedsWithValue(2 * kPieceSize));
}
// Receive the data as 2 separate packets.
char received[6 * kPieceSize];
for (int i = 0; i < 2; i++) {
struct iovec iov[3];
for (int j = 0; j < 3; j++) {
iov[j].iov_base = reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(received) + (i + 2 * j) * kPieceSize);
iov[j].iov_len = kPieceSize;
}
struct msghdr msg = {};
msg.msg_iov = iov;
msg.msg_iovlen = 3;
ASSERT_THAT(recvmsg(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(2 * kPieceSize));
}
EXPECT_EQ(memcmp(buf, received, 4 * kPieceSize), 0);
}
TEST_P(UdpSocketTest, FIONREADShutdown) {
ASSERT_NO_ERRNO(BindLoopback());
int n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
EXPECT_THAT(shutdown(sock_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(sock_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
TEST_P(UdpSocketTest, FIONREADWriteShutdown) {
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_NO_ERRNO(BindLoopback());
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(bind_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
const char str[] = "abc";
ASSERT_THAT(send(bind_.get(), str, sizeof(str), 0),
SyscallSucceedsWithValue(sizeof(str)));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(str));
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, sizeof(str));
}
// NOTE: Do not use `FIONREAD` as test name because it will be replaced by the
// corresponding macro and become `0x541B`.
TEST_P(UdpSocketTest, Fionread) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that the bound socket with an empty buffer reports an empty first
// packet.
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, psize, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(psize));
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// Check that regardless of how many packets are in the queue, the size
// reported is that of a single packet.
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, psize);
}
}
TEST_P(UdpSocketTest, FIONREADZeroLengthPacket) {
ASSERT_NO_ERRNO(BindLoopback());
// Check that the bound socket with an empty buffer reports an empty first
// packet.
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
// Send 3 packets from sock to bind_.
constexpr int psize = 100;
char buf[3 * psize];
RandomizeBuffer(buf, sizeof(buf));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
for (int i = 0; i < 3; ++i) {
ASSERT_THAT(
sendto(sock_.get(), buf + i * psize, 0, 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(0));
// TODO(gvisor.dev/issue/2726): sending a zero-length message to a hostinet
// socket does not cause a poll event to be triggered.
if (!IsRunningWithHostinet()) {
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
}
// Check that regardless of how many packets are in the queue, the size
// reported is that of a single packet.
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
}
TEST_P(UdpSocketTest, FIONREADZeroLengthWriteShutdown) {
int n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_NO_ERRNO(BindLoopback());
// A UDP socket must be connected before it can be shutdown.
ASSERT_THAT(connect(bind_.get(), bind_addr_, addrlen_), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
const char str[] = "abc";
ASSERT_THAT(send(bind_.get(), str, 0, 0), SyscallSucceedsWithValue(0));
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
EXPECT_THAT(shutdown(bind_.get(), SHUT_RD), SyscallSucceeds());
n = -1;
EXPECT_THAT(ioctl(bind_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
}
TEST_P(UdpSocketTest, SoNoCheckOffByDefault) {
// TODO(gvisor.dev/issue/1202): SO_NO_CHECK socket option not supported by
// hostinet.
SKIP_IF(IsRunningWithHostinet());
int v = -1;
socklen_t optlen = sizeof(v);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
TEST_P(UdpSocketTest, SoNoCheck) {
// TODO(gvisor.dev/issue/1202): SO_NO_CHECK socket option not supported by
// hostinet.
SKIP_IF(IsRunningWithHostinet());
int v = kSockOptOn;
socklen_t optlen = sizeof(v);
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, optlen),
SyscallSucceeds());
v = -1;
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOn);
ASSERT_EQ(optlen, sizeof(v));
v = kSockOptOff;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, optlen),
SyscallSucceeds());
v = -1;
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_NO_CHECK, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
#ifdef __linux__
TEST_P(UdpSocketTest, ErrorQueue) {
char cmsgbuf[CMSG_SPACE(sizeof(sock_extended_err))];
msghdr msg;
memset(&msg, 0, sizeof(msg));
iovec iov;
memset(&iov, 0, sizeof(iov));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
// recv*(MSG_ERRQUEUE) never blocks, even without MSG_DONTWAIT.
EXPECT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, MSG_ERRQUEUE),
SyscallFailsWithErrno(EAGAIN));
}
#endif // __linux__
TEST_P(UdpSocketTest, SoTimestampOffByDefault) {
// TODO(gvisor.dev/issue/1202): SO_TIMESTAMP socket option not supported by
// hostinet.
SKIP_IF(IsRunningWithHostinet());
int v = -1;
socklen_t optlen = sizeof(v);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, &optlen),
SyscallSucceeds());
ASSERT_EQ(v, kSockOptOff);
ASSERT_EQ(optlen, sizeof(v));
}
TEST_P(UdpSocketTest, SoTimestamp) {
// TODO(gvisor.dev/issue/1202): ioctl() and SO_TIMESTAMP socket option are not
// supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
int v = 1;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, sizeof(v)),
SyscallSucceeds());
char buf[3];
// Send zero length packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, 0),
SyscallSucceedsWithValue(0));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
char cmsgbuf[CMSG_SPACE(sizeof(struct timeval))];
msghdr msg;
memset(&msg, 0, sizeof(msg));
iovec iov;
memset(&iov, 0, sizeof(iov));
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(0));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
ASSERT_EQ(cmsg->cmsg_level, SOL_SOCKET);
ASSERT_EQ(cmsg->cmsg_type, SO_TIMESTAMP);
ASSERT_EQ(cmsg->cmsg_len, CMSG_LEN(sizeof(struct timeval)));
struct timeval tv = {};
memcpy(&tv, CMSG_DATA(cmsg), sizeof(struct timeval));
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
// There should be nothing to get via ioctl.
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv),
SyscallFailsWithErrno(ENOENT));
}
TEST_P(UdpSocketTest, WriteShutdownNotConnected) {
EXPECT_THAT(shutdown(bind_.get(), SHUT_WR), SyscallFailsWithErrno(ENOTCONN));
}
TEST_P(UdpSocketTest, TimestampIoctl) {
// TODO(gvisor.dev/issue/1202): ioctl() is not supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[3];
// Send packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be no control messages.
char recv_buf[sizeof(buf)];
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(bind_.get(), recv_buf, sizeof(recv_buf)));
// A nonzero timeval should be available via ioctl.
struct timeval tv = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv), SyscallSucceeds());
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
}
TEST_P(UdpSocketTest, TimestampIoctlNothingRead) {
// TODO(gvisor.dev/issue/1202): ioctl() is not supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
struct timeval tv = {};
ASSERT_THAT(ioctl(sock_.get(), SIOCGSTAMP, &tv),
SyscallFailsWithErrno(ENOENT));
}
// Test that the timestamp accessed via SIOCGSTAMP is still accessible after
// SO_TIMESTAMP is enabled and used to retrieve a timestamp.
TEST_P(UdpSocketTest, TimestampIoctlPersistence) {
// TODO(gvisor.dev/issue/1202): ioctl() and SO_TIMESTAMP socket option are not
// supported by hostinet.
SKIP_IF(IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
char buf[3];
// Send packet from sock to bind_.
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, 0),
SyscallSucceedsWithValue(0));
struct pollfd pfd = {bind_.get(), POLLIN, 0};
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be no control messages.
char recv_buf[sizeof(buf)];
ASSERT_NO_FATAL_FAILURE(RecvNoCmsg(bind_.get(), recv_buf, sizeof(recv_buf)));
// A nonzero timeval should be available via ioctl.
struct timeval tv = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv), SyscallSucceeds());
ASSERT_TRUE(tv.tv_sec != 0 || tv.tv_usec != 0);
// Enable SO_TIMESTAMP and send a message.
int v = 1;
EXPECT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_TIMESTAMP, &v, sizeof(v)),
SyscallSucceeds());
ASSERT_THAT(RetryEINTR(write)(sock_.get(), buf, 0),
SyscallSucceedsWithValue(0));
ASSERT_THAT(RetryEINTR(poll)(&pfd, 1, /*timeout=*/1000),
SyscallSucceedsWithValue(1));
// There should be a message for SO_TIMESTAMP.
char cmsgbuf[CMSG_SPACE(sizeof(struct timeval))];
msghdr msg = {};
iovec iov = {};
msg.msg_iov = &iov;
msg.msg_iovlen = 1;
msg.msg_control = cmsgbuf;
msg.msg_controllen = sizeof(cmsgbuf);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &msg, 0),
SyscallSucceedsWithValue(0));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg);
ASSERT_NE(cmsg, nullptr);
// The ioctl should return the exact same values as before.
struct timeval tv2 = {};
ASSERT_THAT(ioctl(bind_.get(), SIOCGSTAMP, &tv2), SyscallSucceeds());
ASSERT_EQ(tv.tv_sec, tv2.tv_sec);
ASSERT_EQ(tv.tv_usec, tv2.tv_usec);
}
// Test that a socket with IP_TOS or IPV6_TCLASS set will set the TOS byte on
// outgoing packets, and that a receiving socket with IP_RECVTOS or
// IPV6_RECVTCLASS will create the corresponding control message.
TEST_P(UdpSocketTest, SetAndReceiveTOS) {
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Allow socket to receive control message.
int recv_level = SOL_IP;
int recv_type = IP_RECVTOS;
if (GetParam() != AddressFamily::kIpv4) {
recv_level = SOL_IPV6;
recv_type = IPV6_RECVTCLASS;
}
ASSERT_THAT(setsockopt(bind_.get(), recv_level, recv_type, &kSockOptOn,
sizeof(kSockOptOn)),
SyscallSucceeds());
// Set socket TOS.
int sent_level = recv_level;
int sent_type = IP_TOS;
if (sent_level == SOL_IPV6) {
sent_type = IPV6_TCLASS;
}
int sent_tos = IPTOS_LOWDELAY; // Choose some TOS value.
ASSERT_THAT(setsockopt(sock_.get(), sent_level, sent_type, &sent_tos,
sizeof(sent_tos)),
SyscallSucceeds());
// Prepare message to send.
constexpr size_t kDataLength = 1024;
struct msghdr sent_msg = {};
struct iovec sent_iov = {};
char sent_data[kDataLength];
sent_iov.iov_base = &sent_data[0];
sent_iov.iov_len = kDataLength;
sent_msg.msg_iov = &sent_iov;
sent_msg.msg_iovlen = 1;
ASSERT_THAT(RetryEINTR(sendmsg)(sock_.get(), &sent_msg, 0),
SyscallSucceedsWithValue(kDataLength));
// Receive message.
struct msghdr received_msg = {};
struct iovec received_iov = {};
char received_data[kDataLength];
received_iov.iov_base = &received_data[0];
received_iov.iov_len = kDataLength;
received_msg.msg_iov = &received_iov;
received_msg.msg_iovlen = 1;
size_t cmsg_data_len = sizeof(int8_t);
if (sent_type == IPV6_TCLASS) {
cmsg_data_len = sizeof(int);
}
std::vector<char> received_cmsgbuf(CMSG_SPACE(cmsg_data_len));
received_msg.msg_control = &received_cmsgbuf[0];
received_msg.msg_controllen = received_cmsgbuf.size();
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &received_msg, 0),
SyscallSucceedsWithValue(kDataLength));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(cmsg_data_len));
EXPECT_EQ(cmsg->cmsg_level, sent_level);
EXPECT_EQ(cmsg->cmsg_type, sent_type);
int8_t received_tos = 0;
memcpy(&received_tos, CMSG_DATA(cmsg), sizeof(received_tos));
EXPECT_EQ(received_tos, sent_tos);
}
// Test that sendmsg with IP_TOS and IPV6_TCLASS control messages will set the
// TOS byte on outgoing packets, and that a receiving socket with IP_RECVTOS or
// IPV6_RECVTCLASS will create the corresponding control message.
TEST_P(UdpSocketTest, SendAndReceiveTOS) {
// TODO(b/146661005): Setting TOS via cmsg not supported for netstack.
SKIP_IF(IsRunningOnGvisor() && !IsRunningWithHostinet());
ASSERT_NO_ERRNO(BindLoopback());
ASSERT_THAT(connect(sock_.get(), bind_addr_, addrlen_), SyscallSucceeds());
// Allow socket to receive control message.
int recv_level = SOL_IP;
int recv_type = IP_RECVTOS;
if (GetParam() != AddressFamily::kIpv4) {
recv_level = SOL_IPV6;
recv_type = IPV6_RECVTCLASS;
}
int recv_opt = kSockOptOn;
ASSERT_THAT(setsockopt(bind_.get(), recv_level, recv_type, &recv_opt,
sizeof(recv_opt)),
SyscallSucceeds());
// Prepare message to send.
constexpr size_t kDataLength = 1024;
int sent_level = recv_level;
int sent_type = IP_TOS;
int sent_tos = IPTOS_LOWDELAY; // Choose some TOS value.
struct msghdr sent_msg = {};
struct iovec sent_iov = {};
char sent_data[kDataLength];
sent_iov.iov_base = &sent_data[0];
sent_iov.iov_len = kDataLength;
sent_msg.msg_iov = &sent_iov;
sent_msg.msg_iovlen = 1;
size_t cmsg_data_len = sizeof(int8_t);
if (sent_level == SOL_IPV6) {
sent_type = IPV6_TCLASS;
cmsg_data_len = sizeof(int);
}
std::vector<char> sent_cmsgbuf(CMSG_SPACE(cmsg_data_len));
sent_msg.msg_control = &sent_cmsgbuf[0];
sent_msg.msg_controllen = CMSG_LEN(cmsg_data_len);
// Manually add control message.
struct cmsghdr* sent_cmsg = CMSG_FIRSTHDR(&sent_msg);
sent_cmsg->cmsg_len = CMSG_LEN(cmsg_data_len);
sent_cmsg->cmsg_level = sent_level;
sent_cmsg->cmsg_type = sent_type;
*(int8_t*)CMSG_DATA(sent_cmsg) = sent_tos;
ASSERT_THAT(RetryEINTR(sendmsg)(sock_.get(), &sent_msg, 0),
SyscallSucceedsWithValue(kDataLength));
// Receive message.
struct msghdr received_msg = {};
struct iovec received_iov = {};
char received_data[kDataLength];
received_iov.iov_base = &received_data[0];
received_iov.iov_len = kDataLength;
received_msg.msg_iov = &received_iov;
received_msg.msg_iovlen = 1;
std::vector<char> received_cmsgbuf(CMSG_SPACE(cmsg_data_len));
received_msg.msg_control = &received_cmsgbuf[0];
received_msg.msg_controllen = CMSG_LEN(cmsg_data_len);
ASSERT_THAT(RetryEINTR(recvmsg)(bind_.get(), &received_msg, 0),
SyscallSucceedsWithValue(kDataLength));
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&received_msg);
ASSERT_NE(cmsg, nullptr);
EXPECT_EQ(cmsg->cmsg_len, CMSG_LEN(cmsg_data_len));
EXPECT_EQ(cmsg->cmsg_level, sent_level);
EXPECT_EQ(cmsg->cmsg_type, sent_type);
int8_t received_tos = 0;
memcpy(&received_tos, CMSG_DATA(cmsg), sizeof(received_tos));
EXPECT_EQ(received_tos, sent_tos);
}
TEST_P(UdpSocketTest, RecvBufLimitsEmptyRcvBuf) {
// Discover minimum buffer size by setting it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &kRcvBufSz,
sizeof(kRcvBufSz)),
SyscallSucceeds());
int min = 0;
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
// Bind bind_ to loopback.
ASSERT_NO_ERRNO(BindLoopback());
{
// Send data of size min and verify that it's received.
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
std::vector<char> received(buf.size());
EXPECT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
}
{
// Send data of size min + 1 and verify that its received. Both linux and
// Netstack accept a dgram that exceeds rcvBuf limits if the receive buffer
// is currently empty.
std::vector<char> buf(min + 1);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
std::vector<char> received(buf.size());
ASSERT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
}
}
// Test that receive buffer limits are enforced.
TEST_P(UdpSocketTest, RecvBufLimits) {
// Bind s_ to loopback.
ASSERT_NO_ERRNO(BindLoopback());
int min = 0;
{
// Discover minimum buffer size by trying to set it to zero.
constexpr int kRcvBufSz = 0;
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &kRcvBufSz,
sizeof(kRcvBufSz)),
SyscallSucceeds());
socklen_t min_len = sizeof(min);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &min, &min_len),
SyscallSucceeds());
}
// Now set the limit to min * 4.
int new_rcv_buf_sz = min * 4;
if (!IsRunningOnGvisor() || IsRunningWithHostinet()) {
// Linux doubles the value specified so just set to min * 2.
new_rcv_buf_sz = min * 2;
}
ASSERT_THAT(setsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &new_rcv_buf_sz,
sizeof(new_rcv_buf_sz)),
SyscallSucceeds());
int rcv_buf_sz = 0;
{
socklen_t rcv_buf_len = sizeof(rcv_buf_sz);
ASSERT_THAT(getsockopt(bind_.get(), SOL_SOCKET, SO_RCVBUF, &rcv_buf_sz,
&rcv_buf_len),
SyscallSucceeds());
}
{
std::vector<char> buf(min);
RandomizeBuffer(buf.data(), buf.size());
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
int sent = 4;
if (IsRunningOnGvisor() && !IsRunningWithHostinet()) {
// Linux seems to drop the 4th packet even though technically it should
// fit in the receive buffer.
ASSERT_THAT(
sendto(sock_.get(), buf.data(), buf.size(), 0, bind_addr_, addrlen_),
SyscallSucceedsWithValue(buf.size()));
sent++;
}
for (int i = 0; i < sent - 1; i++) {
// Receive the data.
std::vector<char> received(buf.size());
EXPECT_THAT(RecvTimeout(bind_.get(), received.data(), received.size(),
1 /*timeout*/),
IsPosixErrorOkAndHolds(received.size()));
EXPECT_EQ(memcmp(buf.data(), received.data(), buf.size()), 0);
}
// The last receive should fail with EAGAIN as the last packet should have
// been dropped due to lack of space in the receive buffer.
std::vector<char> received(buf.size());
EXPECT_THAT(
recv(bind_.get(), received.data(), received.size(), MSG_DONTWAIT),
SyscallFailsWithErrno(EAGAIN));
}
}
#ifdef __linux__
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
// gVisor currently silently ignores attaching a filter.
TEST_P(UdpSocketTest, SetSocketDetachFilter) {
// Program generated using sudo tcpdump -i lo udp and port 1234 -dd
struct sock_filter code[] = {
{0x28, 0, 0, 0x0000000c}, {0x15, 0, 6, 0x000086dd},
{0x30, 0, 0, 0x00000014}, {0x15, 0, 15, 0x00000011},
{0x28, 0, 0, 0x00000036}, {0x15, 12, 0, 0x000004d2},
{0x28, 0, 0, 0x00000038}, {0x15, 10, 11, 0x000004d2},
{0x15, 0, 10, 0x00000800}, {0x30, 0, 0, 0x00000017},
{0x15, 0, 8, 0x00000011}, {0x28, 0, 0, 0x00000014},
{0x45, 6, 0, 0x00001fff}, {0xb1, 0, 0, 0x0000000e},
{0x48, 0, 0, 0x0000000e}, {0x15, 2, 0, 0x000004d2},
{0x48, 0, 0, 0x00000010}, {0x15, 0, 1, 0x000004d2},
{0x6, 0, 0, 0x00040000}, {0x6, 0, 0, 0x00000000},
};
struct sock_fprog bpf = {
.len = ABSL_ARRAYSIZE(code),
.filter = code,
};
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf)),
SyscallSucceeds());
constexpr int val = 0;
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallSucceeds());
}
#endif // __linux__
TEST_P(UdpSocketTest, SetSocketDetachFilterNoInstalledFilter) {
// TODO(gvisor.dev/2746): Support SO_ATTACH_FILTER/SO_DETACH_FILTER.
SKIP_IF(IsRunningOnGvisor());
constexpr int val = 0;
ASSERT_THAT(
setsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, sizeof(val)),
SyscallFailsWithErrno(ENOENT));
}
TEST_P(UdpSocketTest, GetSocketDetachFilter) {
int val = 0;
socklen_t val_len = sizeof(val);
ASSERT_THAT(
getsockopt(sock_.get(), SOL_SOCKET, SO_DETACH_FILTER, &val, &val_len),
SyscallFailsWithErrno(ENOPROTOOPT));
}
TEST_P(UdpSocketTest, SendToZeroPort) {
char buf[8];
struct sockaddr_storage addr = InetLoopbackAddr();
// Sending to an invalid port should fail.
SetPort(&addr, 0);
EXPECT_THAT(
sendto(sock_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), sizeof(addr)),
SyscallFailsWithErrno(EINVAL));
SetPort(&addr, 1234);
EXPECT_THAT(
sendto(sock_.get(), buf, sizeof(buf), 0, AsSockAddr(&addr), sizeof(addr)),
SyscallSucceedsWithValue(sizeof(buf)));
}
TEST_P(UdpSocketTest, ConnectToZeroPortUnbound) {
struct sockaddr_storage addr = InetLoopbackAddr();
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
}
TEST_P(UdpSocketTest, ConnectToZeroPortBound) {
struct sockaddr_storage addr = InetLoopbackAddr();
ASSERT_NO_ERRNO(BindSocket(sock_.get(), AsSockAddr(&addr)));
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
socklen_t len = sizeof(sockaddr_storage);
ASSERT_THAT(getsockname(sock_.get(), AsSockAddr(&addr), &len),
SyscallSucceeds());
ASSERT_EQ(len, addrlen_);
}
TEST_P(UdpSocketTest, ConnectToZeroPortConnected) {
struct sockaddr_storage addr = InetLoopbackAddr();
ASSERT_NO_ERRNO(BindSocket(sock_.get(), AsSockAddr(&addr)));
// Connect to an address with non-zero port should succeed.
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
sockaddr_storage peername;
socklen_t peerlen = sizeof(peername);
ASSERT_THAT(getpeername(sock_.get(), AsSockAddr(&peername), &peerlen),
SyscallSucceeds());
ASSERT_EQ(peerlen, addrlen_);
ASSERT_EQ(memcmp(&peername, &addr, addrlen_), 0);
// However connect() to an address with port 0 will make the following
// getpeername() fail.
SetPort(&addr, 0);
ASSERT_THAT(connect(sock_.get(), AsSockAddr(&addr), addrlen_),
SyscallSucceeds());
ASSERT_THAT(getpeername(sock_.get(), AsSockAddr(&peername), &peerlen),
SyscallFailsWithErrno(ENOTCONN));
}
INSTANTIATE_TEST_SUITE_P(AllInetTests, UdpSocketTest,
::testing::Values(AddressFamily::kIpv4,
AddressFamily::kIpv6,
AddressFamily::kDualStack));
TEST(UdpInet6SocketTest, ConnectInet4Sockaddr) {
// glibc getaddrinfo expects the invariant expressed by this test to be held.
const sockaddr_in connect_sockaddr = {
.sin_family = AF_INET, .sin_addr = {.s_addr = htonl(INADDR_LOOPBACK)}};
auto sock_ =
ASSERT_NO_ERRNO_AND_VALUE(Socket(AF_INET6, SOCK_DGRAM, IPPROTO_UDP));
ASSERT_THAT(
connect(sock_.get(),
reinterpret_cast<const struct sockaddr*>(&connect_sockaddr),
sizeof(sockaddr_in)),
SyscallSucceeds());
sockaddr_storage sockname;
socklen_t len = sizeof(sockaddr_storage);
ASSERT_THAT(getsockname(sock_.get(), AsSockAddr(&sockname), &len),
SyscallSucceeds());
ASSERT_EQ(sockname.ss_family, AF_INET6);
ASSERT_EQ(len, sizeof(sockaddr_in6));
auto sin6 = reinterpret_cast<struct sockaddr_in6*>(&sockname);
char addr_buf[INET6_ADDRSTRLEN];
const char* addr;
ASSERT_NE(addr = inet_ntop(sockname.ss_family, &sockname, addr_buf,
sizeof(addr_buf)),
nullptr);
ASSERT_TRUE(IN6_IS_ADDR_V4MAPPED(sin6->sin6_addr.s6_addr)) << addr;
}
} // namespace
} // namespace testing
} // namespace gvisor