gvisor/pkg/sentry/mm/io.go

605 lines
19 KiB
Go

// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package mm
import (
"gvisor.googlesource.com/gvisor/pkg/sentry/context"
"gvisor.googlesource.com/gvisor/pkg/sentry/platform"
"gvisor.googlesource.com/gvisor/pkg/sentry/safemem"
"gvisor.googlesource.com/gvisor/pkg/sentry/usermem"
"gvisor.googlesource.com/gvisor/pkg/syserror"
)
// There are two supported ways to copy data to/from application virtual
// memory:
//
// 1. Internally-mapped copying: Determine the platform.File that backs the
// copied-to/from virtual address, obtain a mapping of its pages, and read or
// write to the mapping.
//
// 2. AddressSpace copying: If platform.Platform.SupportsAddressSpaceIO() is
// true, AddressSpace permissions are applicable, and an AddressSpace is
// available, copy directly through the AddressSpace, handling faults as
// needed.
//
// (Given that internally-mapped copying requires that backing memory is always
// implemented using a host file descriptor, we could also preadv/pwritev to it
// instead. But this would incur a host syscall for each use of the mapped
// page, whereas mmap is a one-time cost.)
//
// The fixed overhead of internally-mapped copying is expected to be higher
// than that of AddressSpace copying since the former always needs to translate
// addresses, whereas the latter only needs to do so when faults occur.
// However, the throughput of internally-mapped copying is expected to be
// somewhat higher than that of AddressSpace copying due to the high cost of
// page faults and because implementations of the latter usually rely on
// safecopy, which doesn't use AVX registers. So we prefer to use AddressSpace
// copying (when available) for smaller copies, and switch to internally-mapped
// copying once a size threshold is exceeded.
const (
// copyMapMinBytes is the size threshold for switching to internally-mapped
// copying in CopyOut, CopyIn, and ZeroOut.
copyMapMinBytes = 32 << 10 // 32 KB
// rwMapMinBytes is the size threshold for switching to internally-mapped
// copying in CopyOutFrom and CopyInTo. It's lower than copyMapMinBytes
// since AddressSpace copying in this case requires additional buffering;
// see CopyOutFrom for details.
rwMapMinBytes = 512
)
// checkIORange is similar to usermem.Addr.ToRange, but applies bounds checks
// consistent with Linux's arch/x86/include/asm/uaccess.h:access_ok().
//
// Preconditions: length >= 0.
func (mm *MemoryManager) checkIORange(addr usermem.Addr, length int64) (usermem.AddrRange, bool) {
// Note that access_ok() constrains end even if length == 0.
ar, ok := addr.ToRange(uint64(length))
return ar, (ok && ar.End <= mm.layout.MaxAddr)
}
// checkIOVec applies bound checks consistent with Linux's
// arch/x86/include/asm/uaccess.h:access_ok() to ars.
func (mm *MemoryManager) checkIOVec(ars usermem.AddrRangeSeq) bool {
for !ars.IsEmpty() {
ar := ars.Head()
if _, ok := mm.checkIORange(ar.Start, int64(ar.Length())); !ok {
return false
}
ars = ars.Tail()
}
return true
}
func (mm *MemoryManager) asioEnabled(opts usermem.IOOpts) bool {
return mm.haveASIO && !opts.IgnorePermissions && opts.AddressSpaceActive
}
// translateIOError converts errors to EFAULT, as is usually reported for all
// I/O errors originating from MM in Linux.
func translateIOError(ctx context.Context, err error) error {
if err == nil {
return nil
}
if logIOErrors {
ctx.Debugf("MM I/O error: %v", err)
}
return syserror.EFAULT
}
// CopyOut implements usermem.IO.CopyOut.
func (mm *MemoryManager) CopyOut(ctx context.Context, addr usermem.Addr, src []byte, opts usermem.IOOpts) (int, error) {
ar, ok := mm.checkIORange(addr, int64(len(src)))
if !ok {
return 0, syserror.EFAULT
}
if len(src) == 0 {
return 0, nil
}
// Do AddressSpace IO if applicable.
if mm.asioEnabled(opts) && len(src) < copyMapMinBytes {
return mm.asCopyOut(ctx, addr, src)
}
// Go through internal mappings.
n64, err := mm.withInternalMappings(ctx, ar, usermem.Write, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
n, err := safemem.CopySeq(ims, safemem.BlockSeqOf(safemem.BlockFromSafeSlice(src)))
return n, translateIOError(ctx, err)
})
return int(n64), err
}
func (mm *MemoryManager) asCopyOut(ctx context.Context, addr usermem.Addr, src []byte) (int, error) {
var done int
for {
n, err := mm.as.CopyOut(addr+usermem.Addr(done), src[done:])
done += n
if err == nil {
return done, nil
}
if f, ok := err.(platform.SegmentationFault); ok {
ar, _ := addr.ToRange(uint64(len(src)))
if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Write); err != nil {
return done, err
}
continue
}
return done, translateIOError(ctx, err)
}
}
// CopyIn implements usermem.IO.CopyIn.
func (mm *MemoryManager) CopyIn(ctx context.Context, addr usermem.Addr, dst []byte, opts usermem.IOOpts) (int, error) {
ar, ok := mm.checkIORange(addr, int64(len(dst)))
if !ok {
return 0, syserror.EFAULT
}
if len(dst) == 0 {
return 0, nil
}
// Do AddressSpace IO if applicable.
if mm.asioEnabled(opts) && len(dst) < copyMapMinBytes {
return mm.asCopyIn(ctx, addr, dst)
}
// Go through internal mappings.
n64, err := mm.withInternalMappings(ctx, ar, usermem.Read, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
n, err := safemem.CopySeq(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(dst)), ims)
return n, translateIOError(ctx, err)
})
return int(n64), err
}
func (mm *MemoryManager) asCopyIn(ctx context.Context, addr usermem.Addr, dst []byte) (int, error) {
var done int
for {
n, err := mm.as.CopyIn(addr+usermem.Addr(done), dst[done:])
done += n
if err == nil {
return done, nil
}
if f, ok := err.(platform.SegmentationFault); ok {
ar, _ := addr.ToRange(uint64(len(dst)))
if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Read); err != nil {
return done, err
}
continue
}
return done, translateIOError(ctx, err)
}
}
// ZeroOut implements usermem.IO.ZeroOut.
func (mm *MemoryManager) ZeroOut(ctx context.Context, addr usermem.Addr, toZero int64, opts usermem.IOOpts) (int64, error) {
ar, ok := mm.checkIORange(addr, toZero)
if !ok {
return 0, syserror.EFAULT
}
if toZero == 0 {
return 0, nil
}
// Do AddressSpace IO if applicable.
if mm.asioEnabled(opts) && toZero < copyMapMinBytes {
return mm.asZeroOut(ctx, addr, toZero)
}
// Go through internal mappings.
return mm.withInternalMappings(ctx, ar, usermem.Write, opts.IgnorePermissions, func(dsts safemem.BlockSeq) (uint64, error) {
n, err := safemem.ZeroSeq(dsts)
return n, translateIOError(ctx, err)
})
}
func (mm *MemoryManager) asZeroOut(ctx context.Context, addr usermem.Addr, toZero int64) (int64, error) {
var done int64
for {
n, err := mm.as.ZeroOut(addr+usermem.Addr(done), uintptr(toZero-done))
done += int64(n)
if err == nil {
return done, nil
}
if f, ok := err.(platform.SegmentationFault); ok {
ar, _ := addr.ToRange(uint64(toZero))
if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.Write); err != nil {
return done, err
}
continue
}
return done, translateIOError(ctx, err)
}
}
// CopyOutFrom implements usermem.IO.CopyOutFrom.
func (mm *MemoryManager) CopyOutFrom(ctx context.Context, ars usermem.AddrRangeSeq, src safemem.Reader, opts usermem.IOOpts) (int64, error) {
if !mm.checkIOVec(ars) {
return 0, syserror.EFAULT
}
if ars.NumBytes() == 0 {
return 0, nil
}
// Do AddressSpace IO if applicable.
if mm.asioEnabled(opts) && ars.NumBytes() < rwMapMinBytes {
// We have to introduce a buffered copy, instead of just passing a
// safemem.BlockSeq representing addresses in the AddressSpace to src.
// This is because usermem.IO.CopyOutFrom() guarantees that it calls
// src.ReadToBlocks() at most once, which is incompatible with handling
// faults between calls. In the future, this is probably best resolved
// by introducing a CopyOutFrom variant or option that allows it to
// call src.ReadToBlocks() any number of times.
//
// This issue applies to CopyInTo as well.
buf := make([]byte, int(ars.NumBytes()))
bufN, bufErr := src.ReadToBlocks(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(buf)))
var done int64
for done < int64(bufN) {
ar := ars.Head()
cplen := int64(ar.Length())
if cplen > int64(bufN)-done {
cplen = int64(bufN) - done
}
n, err := mm.asCopyOut(ctx, ar.Start, buf[int(done):int(done+cplen)])
done += int64(n)
if err != nil {
return done, err
}
ars = ars.Tail()
}
// Do not convert errors returned by src to EFAULT.
return done, bufErr
}
// Go through internal mappings.
return mm.withVecInternalMappings(ctx, ars, usermem.Write, opts.IgnorePermissions, src.ReadToBlocks)
}
// CopyInTo implements usermem.IO.CopyInTo.
func (mm *MemoryManager) CopyInTo(ctx context.Context, ars usermem.AddrRangeSeq, dst safemem.Writer, opts usermem.IOOpts) (int64, error) {
if !mm.checkIOVec(ars) {
return 0, syserror.EFAULT
}
if ars.NumBytes() == 0 {
return 0, nil
}
// Do AddressSpace IO if applicable.
if mm.asioEnabled(opts) && ars.NumBytes() < rwMapMinBytes {
buf := make([]byte, int(ars.NumBytes()))
var done int
var bufErr error
for !ars.IsEmpty() {
ar := ars.Head()
var n int
n, bufErr = mm.asCopyIn(ctx, ar.Start, buf[done:done+int(ar.Length())])
done += n
if bufErr != nil {
break
}
ars = ars.Tail()
}
n, err := dst.WriteFromBlocks(safemem.BlockSeqOf(safemem.BlockFromSafeSlice(buf[:done])))
if err != nil {
return int64(n), err
}
// Do not convert errors returned by dst to EFAULT.
return int64(n), bufErr
}
// Go through internal mappings.
return mm.withVecInternalMappings(ctx, ars, usermem.Read, opts.IgnorePermissions, dst.WriteFromBlocks)
}
// SwapUint32 implements usermem.IO.SwapUint32.
func (mm *MemoryManager) SwapUint32(ctx context.Context, addr usermem.Addr, new uint32, opts usermem.IOOpts) (uint32, error) {
ar, ok := mm.checkIORange(addr, 4)
if !ok {
return 0, syserror.EFAULT
}
// Do AddressSpace IO if applicable.
if mm.haveASIO && opts.AddressSpaceActive && !opts.IgnorePermissions {
for {
old, err := mm.as.SwapUint32(addr, new)
if err == nil {
return old, nil
}
if f, ok := err.(platform.SegmentationFault); ok {
if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.ReadWrite); err != nil {
return 0, err
}
continue
}
return 0, translateIOError(ctx, err)
}
}
// Go through internal mappings.
var old uint32
_, err := mm.withInternalMappings(ctx, ar, usermem.ReadWrite, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
if ims.NumBlocks() != 1 || ims.NumBytes() != 4 {
// Atomicity is unachievable across mappings.
return 0, syserror.EFAULT
}
im := ims.Head()
var err error
old, err = safemem.SwapUint32(im, new)
if err != nil {
return 0, translateIOError(ctx, err)
}
return 4, nil
})
return old, err
}
// CompareAndSwapUint32 implements usermem.IO.CompareAndSwapUint32.
func (mm *MemoryManager) CompareAndSwapUint32(ctx context.Context, addr usermem.Addr, old, new uint32, opts usermem.IOOpts) (uint32, error) {
ar, ok := mm.checkIORange(addr, 4)
if !ok {
return 0, syserror.EFAULT
}
// Do AddressSpace IO if applicable.
if mm.haveASIO && opts.AddressSpaceActive && !opts.IgnorePermissions {
for {
prev, err := mm.as.CompareAndSwapUint32(addr, old, new)
if err == nil {
return prev, nil
}
if f, ok := err.(platform.SegmentationFault); ok {
if err := mm.handleASIOFault(ctx, f.Addr, ar, usermem.ReadWrite); err != nil {
return 0, err
}
continue
}
return 0, translateIOError(ctx, err)
}
}
// Go through internal mappings.
var prev uint32
_, err := mm.withInternalMappings(ctx, ar, usermem.ReadWrite, opts.IgnorePermissions, func(ims safemem.BlockSeq) (uint64, error) {
if ims.NumBlocks() != 1 || ims.NumBytes() != 4 {
// Atomicity is unachievable across mappings.
return 0, syserror.EFAULT
}
im := ims.Head()
var err error
prev, err = safemem.CompareAndSwapUint32(im, old, new)
if err != nil {
return 0, translateIOError(ctx, err)
}
return 4, nil
})
return prev, err
}
// handleASIOFault handles a page fault at address addr for an AddressSpaceIO
// operation spanning ioar.
//
// Preconditions: mm.as != nil. ioar.Length() != 0. ioar.Contains(addr).
func (mm *MemoryManager) handleASIOFault(ctx context.Context, addr usermem.Addr, ioar usermem.AddrRange, at usermem.AccessType) error {
// Try to map all remaining pages in the I/O operation. This RoundUp can't
// overflow because otherwise it would have been caught by checkIORange.
end, _ := ioar.End.RoundUp()
ar := usermem.AddrRange{addr.RoundDown(), end}
// Don't bother trying existingPMAsLocked; in most cases, if we did have
// existing pmas, we wouldn't have faulted.
// Ensure that we have usable vmas. Here and below, only return early if we
// can't map the first (faulting) page; failure to map later pages are
// silently ignored. This maximizes partial success.
mm.mappingMu.RLock()
vseg, vend, err := mm.getVMAsLocked(ctx, ar, at, false)
if vendaddr := vend.Start(); vendaddr < ar.End {
if vendaddr <= ar.Start {
mm.mappingMu.RUnlock()
return translateIOError(ctx, err)
}
ar.End = vendaddr
}
// Ensure that we have usable pmas.
mm.activeMu.Lock()
pseg, pend, err := mm.getPMAsLocked(ctx, vseg, ar, pmaOpts{
breakCOW: at.Write,
})
mm.mappingMu.RUnlock()
if pendaddr := pend.Start(); pendaddr < ar.End {
if pendaddr <= ar.Start {
mm.activeMu.Unlock()
return translateIOError(ctx, err)
}
ar.End = pendaddr
}
// Downgrade to a read-lock on activeMu since we don't need to mutate pmas
// anymore.
mm.activeMu.DowngradeLock()
err = mm.mapASLocked(pseg, ar, false)
mm.activeMu.RUnlock()
return translateIOError(ctx, err)
}
// withInternalMappings ensures that pmas exist for all addresses in ar,
// support access of type (at, ignorePermissions), and have internal mappings
// cached. It then calls f with mm.activeMu locked for reading, passing
// internal mappings for the subrange of ar for which this property holds.
//
// withInternalMappings takes a function returning uint64 since many safemem
// functions have this property, but returns an int64 since this is usually
// more useful for usermem.IO methods.
//
// Preconditions: 0 < ar.Length() <= math.MaxInt64.
func (mm *MemoryManager) withInternalMappings(ctx context.Context, ar usermem.AddrRange, at usermem.AccessType, ignorePermissions bool, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
po := pmaOpts{
breakCOW: at.Write,
}
// If pmas are already available, we can do IO without touching mm.vmas or
// mm.mappingMu.
mm.activeMu.RLock()
if pseg := mm.existingPMAsLocked(ar, at, ignorePermissions, po, true /* needInternalMappings */); pseg.Ok() {
n, err := f(mm.internalMappingsLocked(pseg, ar))
mm.activeMu.RUnlock()
// Do not convert errors returned by f to EFAULT.
return int64(n), err
}
mm.activeMu.RUnlock()
// Ensure that we have usable vmas.
mm.mappingMu.RLock()
vseg, vend, verr := mm.getVMAsLocked(ctx, ar, at, ignorePermissions)
if vendaddr := vend.Start(); vendaddr < ar.End {
if vendaddr <= ar.Start {
mm.mappingMu.RUnlock()
return 0, translateIOError(ctx, verr)
}
ar.End = vendaddr
}
// Ensure that we have usable pmas.
mm.activeMu.Lock()
pseg, pend, perr := mm.getPMAsLocked(ctx, vseg, ar, po)
mm.mappingMu.RUnlock()
if pendaddr := pend.Start(); pendaddr < ar.End {
if pendaddr <= ar.Start {
mm.activeMu.Unlock()
return 0, translateIOError(ctx, perr)
}
ar.End = pendaddr
}
imend, imerr := mm.getPMAInternalMappingsLocked(pseg, ar)
mm.activeMu.DowngradeLock()
if imendaddr := imend.Start(); imendaddr < ar.End {
if imendaddr <= ar.Start {
mm.activeMu.RUnlock()
return 0, translateIOError(ctx, imerr)
}
ar.End = imendaddr
}
// Do I/O.
un, err := f(mm.internalMappingsLocked(pseg, ar))
mm.activeMu.RUnlock()
n := int64(un)
// Return the first error in order of progress through ar.
if err != nil {
// Do not convert errors returned by f to EFAULT.
return n, err
}
if imerr != nil {
return n, translateIOError(ctx, imerr)
}
if perr != nil {
return n, translateIOError(ctx, perr)
}
return n, translateIOError(ctx, verr)
}
// withVecInternalMappings ensures that pmas exist for all addresses in ars,
// support access of type (at, ignorePermissions), and have internal mappings
// cached. It then calls f with mm.activeMu locked for reading, passing
// internal mappings for the subset of ars for which this property holds.
//
// Preconditions: !ars.IsEmpty().
func (mm *MemoryManager) withVecInternalMappings(ctx context.Context, ars usermem.AddrRangeSeq, at usermem.AccessType, ignorePermissions bool, f func(safemem.BlockSeq) (uint64, error)) (int64, error) {
// withInternalMappings is faster than withVecInternalMappings because of
// iterator plumbing (this isn't generally practical in the vector case due
// to iterator invalidation between AddrRanges). Use it if possible.
if ars.NumRanges() == 1 {
return mm.withInternalMappings(ctx, ars.Head(), at, ignorePermissions, f)
}
po := pmaOpts{
breakCOW: at.Write,
}
// If pmas are already available, we can do IO without touching mm.vmas or
// mm.mappingMu.
mm.activeMu.RLock()
if mm.existingVecPMAsLocked(ars, at, ignorePermissions, po, true /* needInternalMappings */) {
n, err := f(mm.vecInternalMappingsLocked(ars))
mm.activeMu.RUnlock()
// Do not convert errors returned by f to EFAULT.
return int64(n), err
}
mm.activeMu.RUnlock()
// Ensure that we have usable vmas.
mm.mappingMu.RLock()
vars, verr := mm.getVecVMAsLocked(ctx, ars, at, ignorePermissions)
if vars.NumBytes() == 0 {
mm.mappingMu.RUnlock()
return 0, translateIOError(ctx, verr)
}
// Ensure that we have usable pmas.
mm.activeMu.Lock()
pars, perr := mm.getVecPMAsLocked(ctx, vars, po)
mm.mappingMu.RUnlock()
if pars.NumBytes() == 0 {
mm.activeMu.Unlock()
return 0, translateIOError(ctx, perr)
}
imars, imerr := mm.getVecPMAInternalMappingsLocked(pars)
mm.activeMu.DowngradeLock()
if imars.NumBytes() == 0 {
mm.activeMu.RUnlock()
return 0, translateIOError(ctx, imerr)
}
// Do I/O.
un, err := f(mm.vecInternalMappingsLocked(imars))
mm.activeMu.RUnlock()
n := int64(un)
// Return the first error in order of progress through ars.
if err != nil {
// Do not convert errors from f to EFAULT.
return n, err
}
if imerr != nil {
return n, translateIOError(ctx, imerr)
}
if perr != nil {
return n, translateIOError(ctx, perr)
}
return n, translateIOError(ctx, verr)
}
// truncatedAddrRangeSeq returns a copy of ars, but with the end truncated to
// at most address end on AddrRange arsit.Head(). It is used in vector I/O paths to
// truncate usermem.AddrRangeSeq when errors occur.
//
// Preconditions: !arsit.IsEmpty(). end <= arsit.Head().End.
func truncatedAddrRangeSeq(ars, arsit usermem.AddrRangeSeq, end usermem.Addr) usermem.AddrRangeSeq {
ar := arsit.Head()
if end <= ar.Start {
return ars.TakeFirst64(ars.NumBytes() - arsit.NumBytes())
}
return ars.TakeFirst64(ars.NumBytes() - arsit.NumBytes() + int64(end-ar.Start))
}