gvisor/pkg/sentry/kernel/futex/futex_test.go

501 lines
11 KiB
Go

// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package futex
import (
"math"
"runtime"
"sync"
"sync/atomic"
"syscall"
"testing"
"unsafe"
)
const (
testMutexSize = 4
testMutexLocked uint32 = 1
testMutexUnlocked uint32 = 0
)
// testData implements the Checker interface, and allows us to
// treat the address passed for futex operations as an index in
// a byte slice for testing simplicity.
type testData []byte
func newTestData(size uint) testData {
return make([]byte, size)
}
func (t testData) Check(addr uintptr, val uint32) error {
if val != atomic.LoadUint32((*uint32)(unsafe.Pointer(&t[addr]))) {
return syscall.EAGAIN
}
return nil
}
func (t testData) Op(addr uintptr, val uint32) (bool, error) {
return val == 0, nil
}
// testMutex ties together a testData slice, an address, and a
// futex manager in order to implement the sync.Locker interface.
// Beyond being used as a Locker, this is a simple mechanism for
// changing the underlying values for simpler tests.
type testMutex struct {
a uintptr
d testData
m *Manager
}
func newTestMutex(addr uintptr, d testData, m *Manager) *testMutex {
return &testMutex{a: addr, d: d, m: m}
}
// Lock acquires the testMutex.
// This may wait for it to be available via the futex manager.
func (t *testMutex) Lock() {
for {
// Attempt to grab the lock.
if atomic.CompareAndSwapUint32(
((*uint32)(unsafe.Pointer(&t.d[t.a]))),
testMutexUnlocked,
testMutexLocked) {
// Lock held.
return
}
// Wait for it to be "not locked".
w := NewWaiter()
err := t.m.WaitPrepare(w, t.d, t.a, testMutexLocked, ^uint32(0))
if err == syscall.EAGAIN {
continue
}
if err != nil {
// Should never happen.
panic("WaitPrepare returned unexpected error: " + err.Error())
}
<-w.C
t.m.WaitComplete(w)
}
}
// Unlock releases the testMutex.
// This will notify any waiters via the futex manager.
func (t *testMutex) Unlock() {
// Unlock.
atomic.StoreUint32(((*uint32)(unsafe.Pointer(&t.d[t.a]))), testMutexUnlocked)
// Notify all waiters.
t.m.Wake(t.a, ^uint32(0), math.MaxInt32)
}
func TestFutexWake(t *testing.T) {
m := NewManager()
d := newTestData(testMutexSize)
// Wait for it to be locked.
// (This won't trigger the wake in testMutex)
w := NewWaiter()
m.WaitPrepare(w, d, 0, testMutexUnlocked, ^uint32(0))
// Wake the single thread.
if _, err := m.Wake(0, ^uint32(0), 1); err != nil {
t.Error("wake error:", err)
}
<-w.C
m.WaitComplete(w)
}
func TestFutexWakeBitmask(t *testing.T) {
m := NewManager()
d := newTestData(testMutexSize)
// Wait for it to be locked.
// (This won't trigger the wake in testMutex)
w := NewWaiter()
m.WaitPrepare(w, d, 0, testMutexUnlocked, 0x0000ffff)
// Wake the single thread, not using the bitmask.
if _, err := m.Wake(0, 0xffff0000, 1); err != nil {
t.Error("wake non-matching bitmask error:", err)
}
select {
case <-w.C:
t.Error("w is alive?")
default:
}
// Now use a matching bitmask.
if _, err := m.Wake(0, 0x00000001, 1); err != nil {
t.Error("wake matching bitmask error:", err)
}
<-w.C
m.WaitComplete(w)
}
func TestFutexWakeTwo(t *testing.T) {
m := NewManager()
d := newTestData(testMutexSize)
// Wait for it to be locked.
// (This won't trigger the wake in testMutex)
w1 := NewWaiter()
w2 := NewWaiter()
w3 := NewWaiter()
m.WaitPrepare(w1, d, 0, testMutexUnlocked, ^uint32(0))
m.WaitPrepare(w2, d, 0, testMutexUnlocked, ^uint32(0))
m.WaitPrepare(w3, d, 0, testMutexUnlocked, ^uint32(0))
// Wake exactly two threads.
if _, err := m.Wake(0, ^uint32(0), 2); err != nil {
t.Error("wake error:", err)
}
// Ensure exactly two are alive.
// We don't get guarantees about exactly which two,
// (although we expect them to be w1 and w2).
awake := 0
for {
select {
case <-w1.C:
awake++
case <-w2.C:
awake++
case <-w3.C:
awake++
default:
if awake != 2 {
t.Error("awake != 2?")
}
// Success.
return
}
}
}
func TestFutexWakeUnrelated(t *testing.T) {
m := NewManager()
d := newTestData(2 * testMutexSize)
// Wait for it to be locked.
w1 := NewWaiter()
w2 := NewWaiter()
m.WaitPrepare(w1, d, 0*testMutexSize, testMutexUnlocked, ^uint32(0))
m.WaitPrepare(w2, d, 1*testMutexSize, testMutexUnlocked, ^uint32(0))
// Wake only the second one.
if _, err := m.Wake(1*testMutexSize, ^uint32(0), 2); err != nil {
t.Error("wake error:", err)
}
// Ensure only r2 is alive.
select {
case <-w1.C:
t.Error("w1 is alive?")
default:
}
<-w2.C
}
// This function was shamelessly stolen from mutex_test.go.
func HammerMutex(l sync.Locker, loops int, cdone chan bool) {
for i := 0; i < loops; i++ {
l.Lock()
runtime.Gosched()
l.Unlock()
}
cdone <- true
}
func TestFutexStress(t *testing.T) {
m := NewManager()
d := newTestData(testMutexSize)
tm := newTestMutex(0*testMutexSize, d, m)
c := make(chan bool)
for i := 0; i < 10; i++ {
go HammerMutex(tm, 1000, c)
}
for i := 0; i < 10; i++ {
<-c
}
}
func TestWakeOpEmpty(t *testing.T) {
m := NewManager()
d := newTestData(8)
n, err := m.WakeOp(d, 0, 4, 10, 10, 0)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 0 {
t.Fatalf("Invalid number of wakes: want 0, got %d", n)
}
}
func TestWakeOpFirstNonEmpty(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add two waiters on address 0.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
// Wake up all waiters on address 0.
n, err := m.WakeOp(d, 0, 4, 10, 10, 0)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 2 {
t.Fatalf("Invalid number of wakes: want 2, got %d", n)
}
}
func TestWakeOpSecondNonEmpty(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add two waiters on address 4.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
// Wake up all waiters on address 4.
n, err := m.WakeOp(d, 0, 4, 10, 10, 0)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 2 {
t.Fatalf("Invalid number of wakes: want 2, got %d", n)
}
}
func TestWakeOpSecondNonEmptyFailingOp(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add two waiters on address 4.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
// Wake up all waiters on address 4.
n, err := m.WakeOp(d, 0, 4, 10, 10, 1)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 0 {
t.Fatalf("Invalid number of wakes: want 0, got %d", n)
}
}
func TestWakeOpAllNonEmpty(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add two waiters on address 0.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
// Add two waiters on address 4.
w3 := NewWaiter()
if err := m.WaitPrepare(w3, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w3)
w4 := NewWaiter()
if err := m.WaitPrepare(w4, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w4)
// Wake up all waiters on both addresses.
n, err := m.WakeOp(d, 0, 4, 10, 10, 0)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 4 {
t.Fatalf("Invalid number of wakes: want 4, got %d", n)
}
}
func TestWakeOpAllNonEmptyFailingOp(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add two waiters on address 0.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
// Add two waiters on address 4.
w3 := NewWaiter()
if err := m.WaitPrepare(w3, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w3)
w4 := NewWaiter()
if err := m.WaitPrepare(w4, d, 4, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w4)
// Wake up all waiters on both addresses.
n, err := m.WakeOp(d, 0, 4, 10, 10, 1)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 2 {
t.Fatalf("Invalid number of wakes: want 2, got %d", n)
}
}
func TestWakeOpSameAddress(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add four waiters on address 0.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
w3 := NewWaiter()
if err := m.WaitPrepare(w3, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w3)
w4 := NewWaiter()
if err := m.WaitPrepare(w4, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w4)
// Use the same address, with one at most one waiter from each.
n, err := m.WakeOp(d, 0, 0, 1, 1, 0)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 2 {
t.Fatalf("Invalid number of wakes: want 2, got %d", n)
}
}
func TestWakeOpSameAddressFailingOp(t *testing.T) {
m := NewManager()
d := newTestData(8)
// Add four waiters on address 0.
w1 := NewWaiter()
if err := m.WaitPrepare(w1, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w1)
w2 := NewWaiter()
if err := m.WaitPrepare(w2, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w2)
w3 := NewWaiter()
if err := m.WaitPrepare(w3, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w3)
w4 := NewWaiter()
if err := m.WaitPrepare(w4, d, 0, 0, ^uint32(0)); err != nil {
t.Fatalf("WaitPrepare failed: %v", err)
}
defer m.WaitComplete(w4)
// Use the same address, with one at most one waiter from each.
n, err := m.WakeOp(d, 0, 0, 1, 1, 1)
if err != nil {
t.Fatalf("WakeOp failed: %v", err)
}
if n != 1 {
t.Fatalf("Invalid number of wakes: want 1, got %d", n)
}
}