gvisor/runsc/boot/controller.go

501 lines
15 KiB
Go

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package boot
import (
"errors"
"fmt"
"os"
"syscall"
specs "github.com/opencontainers/runtime-spec/specs-go"
"gvisor.dev/gvisor/pkg/control/server"
"gvisor.dev/gvisor/pkg/log"
"gvisor.dev/gvisor/pkg/sentry/control"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/kernel"
"gvisor.dev/gvisor/pkg/sentry/socket/netstack"
"gvisor.dev/gvisor/pkg/sentry/state"
"gvisor.dev/gvisor/pkg/sentry/time"
"gvisor.dev/gvisor/pkg/sentry/watchdog"
"gvisor.dev/gvisor/pkg/tcpip/stack"
"gvisor.dev/gvisor/pkg/urpc"
"gvisor.dev/gvisor/runsc/specutils"
)
const (
// ContainerCheckpoint checkpoints a container.
ContainerCheckpoint = "containerManager.Checkpoint"
// ContainerCreate creates a container.
ContainerCreate = "containerManager.Create"
// ContainerDestroy is used to stop a non-root container and free all
// associated resources in the sandbox.
ContainerDestroy = "containerManager.Destroy"
// ContainerEvent is the URPC endpoint for getting stats about the
// container used by "runsc events".
ContainerEvent = "containerManager.Event"
// ContainerExecuteAsync is the URPC endpoint for executing a command in a
// container.
ContainerExecuteAsync = "containerManager.ExecuteAsync"
// ContainerPause pauses the container.
ContainerPause = "containerManager.Pause"
// ContainerProcesses is the URPC endpoint for getting the list of
// processes running in a container.
ContainerProcesses = "containerManager.Processes"
// ContainerRestore restores a container from a statefile.
ContainerRestore = "containerManager.Restore"
// ContainerResume unpauses the paused container.
ContainerResume = "containerManager.Resume"
// ContainerSignal is used to send a signal to a container.
ContainerSignal = "containerManager.Signal"
// ContainerSignalProcess is used to send a signal to a particular
// process in a container.
ContainerSignalProcess = "containerManager.SignalProcess"
// ContainerStart is the URPC endpoint for running a non-root container
// within a sandbox.
ContainerStart = "containerManager.Start"
// ContainerWait is used to wait on the init process of the container
// and return its ExitStatus.
ContainerWait = "containerManager.Wait"
// ContainerWaitPID is used to wait on a process with a certain PID in
// the sandbox and return its ExitStatus.
ContainerWaitPID = "containerManager.WaitPID"
// NetworkCreateLinksAndRoutes is the URPC endpoint for creating links
// and routes in a network stack.
NetworkCreateLinksAndRoutes = "Network.CreateLinksAndRoutes"
// RootContainerStart is the URPC endpoint for starting a new sandbox
// with root container.
RootContainerStart = "containerManager.StartRoot"
// SandboxStacks collects sandbox stacks for debugging.
SandboxStacks = "debug.Stacks"
)
// Profiling related commands (see pprof.go for more details).
const (
StartCPUProfile = "Profile.StartCPUProfile"
StopCPUProfile = "Profile.StopCPUProfile"
HeapProfile = "Profile.HeapProfile"
StartTrace = "Profile.StartTrace"
StopTrace = "Profile.StopTrace"
)
// Logging related commands (see logging.go for more details).
const (
ChangeLogging = "Logging.Change"
)
// ControlSocketAddr generates an abstract unix socket name for the given ID.
func ControlSocketAddr(id string) string {
return fmt.Sprintf("\x00runsc-sandbox.%s", id)
}
// controller holds the control server, and is used for communication into the
// sandbox.
type controller struct {
// srv is the control server.
srv *server.Server
// manager holds the containerManager methods.
manager *containerManager
}
// newController creates a new controller. The caller must call
// controller.srv.StartServing() to start the controller.
func newController(fd int, l *Loader) (*controller, error) {
srv, err := server.CreateFromFD(fd)
if err != nil {
return nil, err
}
manager := &containerManager{
startChan: make(chan struct{}),
startResultChan: make(chan error),
l: l,
}
srv.Register(manager)
if eps, ok := l.k.NetworkStack().(*netstack.Stack); ok {
net := &Network{
Stack: eps.Stack,
}
srv.Register(net)
}
srv.Register(&debug{})
srv.Register(&control.Logging{})
if l.conf.ProfileEnable {
srv.Register(&control.Profile{})
}
return &controller{
srv: srv,
manager: manager,
}, nil
}
// containerManager manages sandbox containers.
type containerManager struct {
// startChan is used to signal when the root container process should
// be started.
startChan chan struct{}
// startResultChan is used to signal when the root container has
// started. Any errors encountered during startup will be sent to the
// channel. A nil value indicates success.
startResultChan chan error
// l is the loader that creates containers and sandboxes.
l *Loader
}
// StartRoot will start the root container process.
func (cm *containerManager) StartRoot(cid *string, _ *struct{}) error {
log.Debugf("containerManager.StartRoot %q", *cid)
// Tell the root container to start and wait for the result.
cm.startChan <- struct{}{}
if err := <-cm.startResultChan; err != nil {
return fmt.Errorf("starting sandbox: %v", err)
}
return nil
}
// Processes retrieves information about processes running in the sandbox.
func (cm *containerManager) Processes(cid *string, out *[]*control.Process) error {
log.Debugf("containerManager.Processes: %q", *cid)
return control.Processes(cm.l.k, *cid, out)
}
// Create creates a container within a sandbox.
func (cm *containerManager) Create(cid *string, _ *struct{}) error {
log.Debugf("containerManager.Create: %q", *cid)
return cm.l.createContainer(*cid)
}
// StartArgs contains arguments to the Start method.
type StartArgs struct {
// Spec is the spec of the container to start.
Spec *specs.Spec
// Config is the runsc-specific configuration for the sandbox.
Conf *Config
// CID is the ID of the container to start.
CID string
// FilePayload contains, in order:
// * stdin, stdout, and stderr.
// * the file descriptor over which the sandbox will
// request files from its root filesystem.
urpc.FilePayload
}
// Start runs a created container within a sandbox.
func (cm *containerManager) Start(args *StartArgs, _ *struct{}) error {
log.Debugf("containerManager.Start: %+v", args)
// Validate arguments.
if args == nil {
return errors.New("start missing arguments")
}
if args.Spec == nil {
return errors.New("start arguments missing spec")
}
if args.Conf == nil {
return errors.New("start arguments missing config")
}
if args.CID == "" {
return errors.New("start argument missing container ID")
}
if len(args.FilePayload.Files) < 4 {
return fmt.Errorf("start arguments must contain stdin, stderr, and stdout followed by at least one file for the container root gofer")
}
// All validation passed, logs the spec for debugging.
specutils.LogSpec(args.Spec)
err := cm.l.startContainer(args.Spec, args.Conf, args.CID, args.FilePayload.Files)
if err != nil {
log.Debugf("containerManager.Start failed %q: %+v: %v", args.CID, args, err)
return err
}
log.Debugf("Container %q started", args.CID)
return nil
}
// Destroy stops a container if it is still running and cleans up its
// filesystem.
func (cm *containerManager) Destroy(cid *string, _ *struct{}) error {
log.Debugf("containerManager.destroy %q", *cid)
return cm.l.destroyContainer(*cid)
}
// ExecuteAsync starts running a command on a created or running sandbox. It
// returns the PID of the new process.
func (cm *containerManager) ExecuteAsync(args *control.ExecArgs, pid *int32) error {
log.Debugf("containerManager.ExecuteAsync: %+v", args)
tgid, err := cm.l.executeAsync(args)
if err != nil {
log.Debugf("containerManager.ExecuteAsync failed: %+v: %v", args, err)
return err
}
*pid = int32(tgid)
return nil
}
// Checkpoint pauses a sandbox and saves its state.
func (cm *containerManager) Checkpoint(o *control.SaveOpts, _ *struct{}) error {
log.Debugf("containerManager.Checkpoint")
state := control.State{
Kernel: cm.l.k,
Watchdog: cm.l.watchdog,
}
return state.Save(o, nil)
}
// Pause suspends a container.
func (cm *containerManager) Pause(_, _ *struct{}) error {
log.Debugf("containerManager.Pause")
cm.l.k.Pause()
return nil
}
// RestoreOpts contains options related to restoring a container's file system.
type RestoreOpts struct {
// FilePayload contains the state file to be restored, followed by the
// platform device file if necessary.
urpc.FilePayload
// SandboxID contains the ID of the sandbox.
SandboxID string
}
// Restore loads a container from a statefile.
// The container's current kernel is destroyed, a restore environment is
// created, and the kernel is recreated with the restore state file. The
// container then sends the signal to start.
func (cm *containerManager) Restore(o *RestoreOpts, _ *struct{}) error {
log.Debugf("containerManager.Restore")
var specFile, deviceFile *os.File
switch numFiles := len(o.FilePayload.Files); numFiles {
case 2:
// The device file is donated to the platform.
// Can't take ownership away from os.File. dup them to get a new FD.
fd, err := syscall.Dup(int(o.FilePayload.Files[1].Fd()))
if err != nil {
return fmt.Errorf("failed to dup file: %v", err)
}
deviceFile = os.NewFile(uintptr(fd), "platform device")
fallthrough
case 1:
specFile = o.FilePayload.Files[0]
case 0:
return fmt.Errorf("at least one file must be passed to Restore")
default:
return fmt.Errorf("at most two files may be passed to Restore")
}
// Pause the kernel while we build a new one.
cm.l.k.Pause()
p, err := createPlatform(cm.l.conf, deviceFile)
if err != nil {
return fmt.Errorf("creating platform: %v", err)
}
k := &kernel.Kernel{
Platform: p,
}
mf, err := createMemoryFile()
if err != nil {
return fmt.Errorf("creating memory file: %v", err)
}
k.SetMemoryFile(mf)
networkStack := cm.l.k.NetworkStack()
cm.l.k = k
// Set up the restore environment.
mntr := newContainerMounter(cm.l.spec, cm.l.goferFDs, cm.l.k, cm.l.mountHints)
renv, err := mntr.createRestoreEnvironment(cm.l.conf)
if err != nil {
return fmt.Errorf("creating RestoreEnvironment: %v", err)
}
fs.SetRestoreEnvironment(*renv)
// Prepare to load from the state file.
if eps, ok := networkStack.(*netstack.Stack); ok {
stack.StackFromEnv = eps.Stack // FIXME(b/36201077)
}
info, err := specFile.Stat()
if err != nil {
return err
}
if info.Size() == 0 {
return fmt.Errorf("file cannot be empty")
}
if cm.l.conf.ProfileEnable {
// initializePProf opens /proc/self/maps, so has to be
// called before installing seccomp filters.
initializePProf()
}
// Seccomp filters have to be applied before parsing the state file.
if err := cm.l.installSeccompFilters(); err != nil {
return err
}
// Load the state.
loadOpts := state.LoadOpts{Source: specFile}
if err := loadOpts.Load(k, networkStack, time.NewCalibratedClocks()); err != nil {
return err
}
// Since we have a new kernel we also must make a new watchdog.
dogOpts := watchdog.DefaultOpts
dogOpts.TaskTimeoutAction = cm.l.conf.WatchdogAction
dog := watchdog.New(k, dogOpts)
// Change the loader fields to reflect the changes made when restoring.
cm.l.k = k
cm.l.watchdog = dog
cm.l.rootProcArgs = kernel.CreateProcessArgs{}
cm.l.restore = true
// Reinitialize the sandbox ID and processes map. Note that it doesn't
// restore the state of multiple containers, nor exec processes.
cm.l.sandboxID = o.SandboxID
cm.l.mu.Lock()
eid := execID{cid: o.SandboxID}
cm.l.processes = map[execID]*execProcess{
eid: {
tg: cm.l.k.GlobalInit(),
},
}
cm.l.mu.Unlock()
// Tell the root container to start and wait for the result.
cm.startChan <- struct{}{}
if err := <-cm.startResultChan; err != nil {
return fmt.Errorf("starting sandbox: %v", err)
}
return nil
}
// Resume unpauses a container.
func (cm *containerManager) Resume(_, _ *struct{}) error {
log.Debugf("containerManager.Resume")
cm.l.k.Unpause()
return nil
}
// Wait waits for the init process in the given container.
func (cm *containerManager) Wait(cid *string, waitStatus *uint32) error {
log.Debugf("containerManager.Wait")
err := cm.l.waitContainer(*cid, waitStatus)
log.Debugf("containerManager.Wait returned, waitStatus: %v: %v", waitStatus, err)
return err
}
// WaitPIDArgs are arguments to the WaitPID method.
type WaitPIDArgs struct {
// PID is the PID in the container's PID namespace.
PID int32
// CID is the container ID.
CID string
}
// WaitPID waits for the process with PID 'pid' in the sandbox.
func (cm *containerManager) WaitPID(args *WaitPIDArgs, waitStatus *uint32) error {
log.Debugf("containerManager.Wait")
return cm.l.waitPID(kernel.ThreadID(args.PID), args.CID, waitStatus)
}
// SignalDeliveryMode enumerates different signal delivery modes.
type SignalDeliveryMode int
const (
// DeliverToProcess delivers the signal to the container process with
// the specified PID. If PID is 0, then the container init process is
// signaled.
DeliverToProcess SignalDeliveryMode = iota
// DeliverToAllProcesses delivers the signal to all processes in the
// container. PID must be 0.
DeliverToAllProcesses
// DeliverToForegroundProcessGroup delivers the signal to the
// foreground process group in the same TTY session as the specified
// process. If PID is 0, then the signal is delivered to the foreground
// process group for the TTY for the init process.
DeliverToForegroundProcessGroup
)
func (s SignalDeliveryMode) String() string {
switch s {
case DeliverToProcess:
return "Process"
case DeliverToAllProcesses:
return "All"
case DeliverToForegroundProcessGroup:
return "Foreground Process Group"
}
return fmt.Sprintf("unknown signal delivery mode: %d", s)
}
// SignalArgs are arguments to the Signal method.
type SignalArgs struct {
// CID is the container ID.
CID string
// Signo is the signal to send to the process.
Signo int32
// PID is the process ID in the given container that will be signaled.
// If 0, the root container will be signalled.
PID int32
// Mode is the signal delivery mode.
Mode SignalDeliveryMode
}
// Signal sends a signal to one or more processes in a container. If args.PID
// is 0, then the container init process is used. Depending on the
// args.SignalDeliveryMode option, the signal may be sent directly to the
// indicated process, to all processes in the container, or to the foreground
// process group.
func (cm *containerManager) Signal(args *SignalArgs, _ *struct{}) error {
log.Debugf("containerManager.Signal %+v", args)
return cm.l.signal(args.CID, args.PID, args.Signo, args.Mode)
}