gvisor/test/syscalls/linux/pipe.cc

637 lines
20 KiB
C++

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fcntl.h> /* Obtain O_* constant definitions */
#include <sys/ioctl.h>
#include <sys/uio.h>
#include <unistd.h>
#include <vector>
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "absl/strings/str_cat.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/temp_path.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
// Used as a non-zero sentinel value, below.
constexpr int kTestValue = 0x12345678;
// Used for synchronization in race tests.
const absl::Duration syncDelay = absl::Seconds(2);
struct PipeCreator {
std::string name_;
// void (fds, is_blocking, is_namedpipe).
std::function<void(int[2], bool*, bool*)> create_;
};
class PipeTest : public ::testing::TestWithParam<PipeCreator> {
public:
static void SetUpTestSuite() {
// Tests intentionally generate SIGPIPE.
TEST_PCHECK(signal(SIGPIPE, SIG_IGN) != SIG_ERR);
}
// Initializes rfd_ and wfd_ as a blocking pipe.
//
// The return value indicates success: the test should be skipped otherwise.
bool CreateBlocking() { return create(true); }
// Initializes rfd_ and wfd_ as a non-blocking pipe.
//
// The return value is per CreateBlocking.
bool CreateNonBlocking() { return create(false); }
// Returns true iff the pipe represents a named pipe.
bool IsNamedPipe() const { return named_pipe_; }
int Size() const {
int s1 = fcntl(rfd_.get(), F_GETPIPE_SZ);
int s2 = fcntl(wfd_.get(), F_GETPIPE_SZ);
EXPECT_GT(s1, 0);
EXPECT_GT(s2, 0);
EXPECT_EQ(s1, s2);
return s1;
}
static void TearDownTestSuite() {
TEST_PCHECK(signal(SIGPIPE, SIG_DFL) != SIG_ERR);
}
private:
bool create(bool wants_blocking) {
// Generate the pipe.
int fds[2] = {-1, -1};
bool is_blocking = false;
GetParam().create_(fds, &is_blocking, &named_pipe_);
if (fds[0] < 0 || fds[1] < 0) {
return false;
}
// Save descriptors.
rfd_.reset(fds[0]);
wfd_.reset(fds[1]);
// Adjust blocking, if needed.
if (!is_blocking && wants_blocking) {
// Clear the blocking flag.
EXPECT_THAT(fcntl(fds[0], F_SETFL, 0), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[1], F_SETFL, 0), SyscallSucceeds());
} else if (is_blocking && !wants_blocking) {
// Set the descriptors to blocking.
EXPECT_THAT(fcntl(fds[0], F_SETFL, O_NONBLOCK), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[1], F_SETFL, O_NONBLOCK), SyscallSucceeds());
}
return true;
}
protected:
FileDescriptor rfd_;
FileDescriptor wfd_;
private:
bool named_pipe_ = false;
};
TEST_P(PipeTest, Inode) {
SKIP_IF(!CreateBlocking());
// Ensure that the inode number is the same for each end.
struct stat rst;
ASSERT_THAT(fstat(rfd_.get(), &rst), SyscallSucceeds());
struct stat wst;
ASSERT_THAT(fstat(wfd_.get(), &wst), SyscallSucceeds());
EXPECT_EQ(rst.st_ino, wst.st_ino);
}
TEST_P(PipeTest, Permissions) {
SKIP_IF(!CreateBlocking());
// Attempt bad operations.
int buf = kTestValue;
ASSERT_THAT(write(rfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EBADF));
EXPECT_THAT(read(wfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EBADF));
}
TEST_P(PipeTest, Flags) {
SKIP_IF(!CreateBlocking());
if (IsNamedPipe()) {
// May be stubbed to zero; define locally.
constexpr int kLargefile = 0100000;
EXPECT_THAT(fcntl(rfd_.get(), F_GETFL),
SyscallSucceedsWithValue(kLargefile | O_RDONLY));
EXPECT_THAT(fcntl(wfd_.get(), F_GETFL),
SyscallSucceedsWithValue(kLargefile | O_WRONLY));
} else {
EXPECT_THAT(fcntl(rfd_.get(), F_GETFL), SyscallSucceedsWithValue(O_RDONLY));
EXPECT_THAT(fcntl(wfd_.get(), F_GETFL), SyscallSucceedsWithValue(O_WRONLY));
}
}
TEST_P(PipeTest, Write) {
SKIP_IF(!CreateBlocking());
int wbuf = kTestValue;
int rbuf = ~kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
}
TEST_P(PipeTest, NonBlocking) {
SKIP_IF(!CreateNonBlocking());
int wbuf = kTestValue;
int rbuf = ~kTestValue;
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallFailsWithErrno(EWOULDBLOCK));
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallFailsWithErrno(EWOULDBLOCK));
}
TEST(Pipe2Test, CloExec) {
int fds[2];
ASSERT_THAT(pipe2(fds, O_CLOEXEC), SyscallSucceeds());
EXPECT_THAT(fcntl(fds[0], F_GETFD), SyscallSucceedsWithValue(FD_CLOEXEC));
EXPECT_THAT(fcntl(fds[1], F_GETFD), SyscallSucceedsWithValue(FD_CLOEXEC));
EXPECT_THAT(close(fds[0]), SyscallSucceeds());
EXPECT_THAT(close(fds[1]), SyscallSucceeds());
}
TEST(Pipe2Test, BadOptions) {
int fds[2];
EXPECT_THAT(pipe2(fds, 0xDEAD), SyscallFailsWithErrno(EINVAL));
}
TEST_P(PipeTest, Seek) {
SKIP_IF(!CreateBlocking());
for (int i = 0; i < 4; i++) {
// Attempt absolute seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 4, SEEK_SET), SyscallFailsWithErrno(ESPIPE));
// Attempt relative seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 4, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
// Attempt end-of-file seeks.
EXPECT_THAT(lseek(rfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(rfd_.get(), -4, SEEK_END), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), 0, SEEK_CUR), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(lseek(wfd_.get(), -4, SEEK_END), SyscallFailsWithErrno(ESPIPE));
// Add some more data to the pipe.
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
}
}
TEST_P(PipeTest, OffsetCalls) {
SKIP_IF(!CreateBlocking());
int buf;
EXPECT_THAT(pread(wfd_.get(), &buf, sizeof(buf), 0),
SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwrite(rfd_.get(), &buf, sizeof(buf), 0),
SyscallFailsWithErrno(ESPIPE));
struct iovec iov;
EXPECT_THAT(preadv(wfd_.get(), &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
EXPECT_THAT(pwritev(rfd_.get(), &iov, 1, 0), SyscallFailsWithErrno(ESPIPE));
}
TEST_P(PipeTest, WriterSideCloses) {
SKIP_IF(!CreateBlocking());
ScopedThread t([this]() {
int buf = ~kTestValue;
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
EXPECT_EQ(buf, kTestValue);
// This will return when the close() completes.
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)), SyscallSucceeds());
// This will return straight away.
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(0));
});
// Sleep a bit so the thread can block.
absl::SleepFor(syncDelay);
// Write to unblock.
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
// Sleep a bit so the thread can block again.
absl::SleepFor(syncDelay);
// Allow the thread to complete.
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
t.Join();
}
TEST_P(PipeTest, WriterSideClosesReadDataFirst) {
SKIP_IF(!CreateBlocking());
int wbuf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
int rbuf;
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
EXPECT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(0));
}
TEST_P(PipeTest, ReaderSideCloses) {
SKIP_IF(!CreateBlocking());
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
int buf = kTestValue;
EXPECT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallFailsWithErrno(EPIPE));
}
TEST_P(PipeTest, CloseTwice) {
SKIP_IF(!CreateBlocking());
int reader = rfd_.release();
int writer = wfd_.release();
ASSERT_THAT(close(reader), SyscallSucceeds());
ASSERT_THAT(close(writer), SyscallSucceeds());
EXPECT_THAT(close(reader), SyscallFailsWithErrno(EBADF));
EXPECT_THAT(close(writer), SyscallFailsWithErrno(EBADF));
}
// Blocking write returns EPIPE when read end is closed if nothing has been
// written.
TEST_P(PipeTest, BlockWriteClosed) {
SKIP_IF(!CreateBlocking());
absl::Notification notify;
ScopedThread t([this, &notify]() {
std::vector<char> buf(Size());
// Exactly fill the pipe buffer.
ASSERT_THAT(WriteFd(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
notify.Notify();
// Attempt to write one more byte. Blocks.
// N.B. Don't use WriteFd, we don't want a retry.
EXPECT_THAT(write(wfd_.get(), buf.data(), 1), SyscallFailsWithErrno(EPIPE));
});
notify.WaitForNotification();
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
t.Join();
}
// Blocking write returns EPIPE when read end is closed even if something has
// been written.
TEST_P(PipeTest, BlockPartialWriteClosed) {
SKIP_IF(!CreateBlocking());
ScopedThread t([this]() {
const int pipe_size = Size();
std::vector<char> buf(2 * pipe_size);
// Write more than fits in the buffer. Blocks then returns partial write
// when the other end is closed. The next call returns EPIPE.
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(pipe_size));
EXPECT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallFailsWithErrno(EPIPE));
});
// Leave time for write to become blocked.
absl::SleepFor(syncDelay);
// Unblock the above.
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
t.Join();
}
TEST_P(PipeTest, ReadFromClosedFd_NoRandomSave) {
SKIP_IF(!CreateBlocking());
absl::Notification notify;
ScopedThread t([this, &notify]() {
notify.Notify();
int buf;
ASSERT_THAT(read(rfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
ASSERT_EQ(kTestValue, buf);
});
notify.WaitForNotification();
// Make sure that the thread gets to read().
absl::SleepFor(syncDelay);
{
// We cannot save/restore here as the read end of pipe is closed but there
// is ongoing read() above. We will not be able to restart the read()
// successfully in restore run since the read fd is closed.
const DisableSave ds;
ASSERT_THAT(close(rfd_.release()), SyscallSucceeds());
int buf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &buf, sizeof(buf)),
SyscallSucceedsWithValue(sizeof(buf)));
t.Join();
}
}
TEST_P(PipeTest, FionRead) {
SKIP_IF(!CreateBlocking());
int n;
ASSERT_THAT(ioctl(rfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
ASSERT_THAT(ioctl(wfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, 0);
std::vector<char> buf(Size());
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
EXPECT_THAT(ioctl(rfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, buf.size());
EXPECT_THAT(ioctl(wfd_.get(), FIONREAD, &n), SyscallSucceedsWithValue(0));
EXPECT_EQ(n, buf.size());
}
// Test that opening an empty anonymous pipe RDONLY via /proc/self/fd/N does not
// block waiting for a writer.
TEST_P(PipeTest, OpenViaProcSelfFD) {
SKIP_IF(!CreateBlocking());
SKIP_IF(IsNamedPipe());
// Close the write end of the pipe.
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
// Open other side via /proc/self/fd. It should not block.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", rfd_.get()), O_RDONLY));
}
// Test that opening and reading from an anonymous pipe (with existing writes)
// RDONLY via /proc/self/fd/N returns the existing data.
TEST_P(PipeTest, OpenViaProcSelfFDWithWrites) {
SKIP_IF(!CreateBlocking());
SKIP_IF(IsNamedPipe());
// Write to the pipe and then close the write fd.
int wbuf = kTestValue;
ASSERT_THAT(write(wfd_.get(), &wbuf, sizeof(wbuf)),
SyscallSucceedsWithValue(sizeof(wbuf)));
ASSERT_THAT(close(wfd_.release()), SyscallSucceeds());
// Open read side via /proc/self/fd, and read from it.
FileDescriptor proc_self_fd = ASSERT_NO_ERRNO_AND_VALUE(
Open(absl::StrCat("/proc/self/fd/", rfd_.get()), O_RDONLY));
int rbuf;
ASSERT_THAT(read(proc_self_fd.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(wbuf, rbuf);
}
// Test that accesses of /proc/<PID>/fd correctly decrement the refcount.
TEST_P(PipeTest, ProcFDReleasesFile) {
SKIP_IF(!CreateBlocking());
// Stat the pipe FD, which shouldn't alter the refcount.
struct stat wst;
ASSERT_THAT(lstat(absl::StrCat("/proc/self/fd/", wfd_.get()).c_str(), &wst),
SyscallSucceeds());
// Close the write end and ensure that read indicates EOF.
wfd_.reset();
char buf;
ASSERT_THAT(read(rfd_.get(), &buf, 1), SyscallSucceedsWithValue(0));
}
// Same for /proc/<PID>/fdinfo.
TEST_P(PipeTest, ProcFDInfoReleasesFile) {
SKIP_IF(!CreateBlocking());
// Stat the pipe FD, which shouldn't alter the refcount.
struct stat wst;
ASSERT_THAT(
lstat(absl::StrCat("/proc/self/fdinfo/", wfd_.get()).c_str(), &wst),
SyscallSucceeds());
// Close the write end and ensure that read indicates EOF.
wfd_.reset();
char buf;
ASSERT_THAT(read(rfd_.get(), &buf, 1), SyscallSucceedsWithValue(0));
}
TEST_P(PipeTest, SizeChange) {
SKIP_IF(!CreateBlocking());
// Set the minimum possible size.
ASSERT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, 0), SyscallSucceeds());
int min = Size();
EXPECT_GT(min, 0); // Should be rounded up.
// Set from the read end.
ASSERT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, min + 1), SyscallSucceeds());
int med = Size();
EXPECT_GT(med, min); // Should have grown, may be rounded.
// Set from the write end.
ASSERT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, med + 1), SyscallSucceeds());
int max = Size();
EXPECT_GT(max, med); // Ditto.
}
TEST_P(PipeTest, SizeChangeMax) {
SKIP_IF(!CreateBlocking());
// Assert there's some maximum.
EXPECT_THAT(fcntl(rfd_.get(), F_SETPIPE_SZ, 0x7fffffffffffffff),
SyscallFailsWithErrno(EINVAL));
EXPECT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, 0x7fffffffffffffff),
SyscallFailsWithErrno(EINVAL));
}
TEST_P(PipeTest, SizeChangeFull) {
SKIP_IF(!CreateBlocking());
// Ensure that we adjust to a large enough size to avoid rounding when we
// perform the size decrease. If rounding occurs, we may not actually
// adjust the size and the call below will return success. It was found via
// experimentation that this granularity avoids the rounding for Linux.
constexpr int kDelta = 64 * 1024;
ASSERT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, Size() + kDelta),
SyscallSucceeds());
// Fill the buffer and try to change down.
std::vector<char> buf(Size());
ASSERT_THAT(write(wfd_.get(), buf.data(), buf.size()),
SyscallSucceedsWithValue(buf.size()));
EXPECT_THAT(fcntl(wfd_.get(), F_SETPIPE_SZ, Size() - kDelta),
SyscallFailsWithErrno(EBUSY));
}
TEST_P(PipeTest, Streaming) {
SKIP_IF(!CreateBlocking());
// We make too many calls to go through full save cycles.
DisableSave ds;
// Size() requires 2 syscalls, call it once and remember the value.
const int pipe_size = Size();
absl::Notification notify;
ScopedThread t([this, &notify, pipe_size]() {
// Don't start until it's full.
notify.WaitForNotification();
for (int i = 0; i < pipe_size; i++) {
int rbuf;
ASSERT_THAT(read(rfd_.get(), &rbuf, sizeof(rbuf)),
SyscallSucceedsWithValue(sizeof(rbuf)));
EXPECT_EQ(rbuf, i);
}
});
// Write 4 bytes * pipe_size. It will fill up the pipe once, notify the reader
// to start. Then we write pipe size worth 3 more times to ensure the reader
// can follow along.
ssize_t total = 0;
for (int i = 0; i < pipe_size; i++) {
ssize_t written = write(wfd_.get(), &i, sizeof(i));
ASSERT_THAT(written, SyscallSucceedsWithValue(sizeof(i)));
total += written;
// Is the next write about to fill up the buffer? Wake up the reader once.
if (total < pipe_size && (total + written) >= pipe_size) {
notify.Notify();
}
}
}
std::string PipeCreatorName(::testing::TestParamInfo<PipeCreator> info) {
return info.param.name_; // Use the name specified.
}
INSTANTIATE_TEST_SUITE_P(
Pipes, PipeTest,
::testing::Values(
PipeCreator{
"pipe",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe(fds), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"pipe2blocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe2(fds, 0), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"pipe2nonblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
ASSERT_THAT(pipe2(fds, O_NONBLOCK), SyscallSucceeds());
*is_blocking = false;
*is_namedpipe = false;
},
},
PipeCreator{
"smallbuffer",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Set to the minimum available size (will round up).
ASSERT_THAT(pipe(fds), SyscallSucceeds());
ASSERT_THAT(fcntl(fds[0], F_SETPIPE_SZ, 0), SyscallSucceeds());
*is_blocking = true;
*is_namedpipe = false;
},
},
PipeCreator{
"namednonblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Create a new file-based pipe (non-blocking).
auto file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
ASSERT_THAT(unlink(file.path().c_str()), SyscallSucceeds());
SKIP_IF(mkfifo(file.path().c_str(), 0644) != 0);
fds[0] = open(file.path().c_str(), O_NONBLOCK | O_RDONLY);
fds[1] = open(file.path().c_str(), O_NONBLOCK | O_WRONLY);
MaybeSave();
*is_blocking = false;
*is_namedpipe = true;
},
},
PipeCreator{
"namedblocking",
[](int fds[2], bool* is_blocking, bool* is_namedpipe) {
// Create a new file-based pipe (blocking).
auto file = ASSERT_NO_ERRNO_AND_VALUE(TempPath::CreateFile());
ASSERT_THAT(unlink(file.path().c_str()), SyscallSucceeds());
SKIP_IF(mkfifo(file.path().c_str(), 0644) != 0);
ScopedThread t([&file, &fds]() {
fds[1] = open(file.path().c_str(), O_WRONLY);
});
fds[0] = open(file.path().c_str(), O_RDONLY);
t.Join();
MaybeSave();
*is_blocking = true;
*is_namedpipe = true;
},
}),
PipeCreatorName);
} // namespace
} // namespace testing
} // namespace gvisor