gvisor/test/syscalls/linux/pty.cc

1239 lines
40 KiB
C++

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <fcntl.h>
#include <linux/major.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include <termios.h>
#include <unistd.h>
#include <iostream>
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/strings/str_cat.h"
#include "absl/synchronization/notification.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "test/util/file_descriptor.h"
#include "test/util/posix_error.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
using ::testing::AnyOf;
using ::testing::Contains;
using ::testing::Eq;
using ::testing::Not;
// Tests Unix98 pseudoterminals.
//
// These tests assume that /dev/ptmx exists and is associated with a devpts
// filesystem mounted at /dev/pts/. While a Linux distribution could
// theoretically place those anywhere, glibc expects those locations, so they
// are effectively fixed.
// Minor device number for an unopened ptmx file.
constexpr int kPtmxMinor = 2;
// The timeout when polling for data from a pty. When data is written to one end
// of a pty, Linux asynchronously makes it available to the other end, so we
// have to wait.
constexpr absl::Duration kTimeout = absl::Seconds(20);
// The maximum line size in bytes returned per read from a pty file.
constexpr int kMaxLineSize = 4096;
// glibc defines its own, different, version of struct termios. We care about
// what the kernel does, not glibc.
#define KERNEL_NCCS 19
struct kernel_termios {
tcflag_t c_iflag;
tcflag_t c_oflag;
tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_line;
cc_t c_cc[KERNEL_NCCS];
};
bool operator==(struct kernel_termios const& a,
struct kernel_termios const& b) {
return memcmp(&a, &b, sizeof(a)) == 0;
}
// Returns the termios-style control character for the passed character.
//
// e.g., for Ctrl-C, i.e., ^C, call ControlCharacter('C').
//
// Standard control characters are ASCII bytes 0 through 31.
constexpr char ControlCharacter(char c) {
// A is 1, B is 2, etc.
return c - 'A' + 1;
}
// Returns the printable character the given control character represents.
constexpr char FromControlCharacter(char c) { return c + 'A' - 1; }
// Returns true if c is a control character.
//
// Standard control characters are ASCII bytes 0 through 31.
constexpr bool IsControlCharacter(char c) { return c <= 31; }
struct Field {
const char* name;
uint64_t mask;
uint64_t value;
};
// ParseFields returns a string representation of value, using the names in
// fields.
std::string ParseFields(const Field* fields, size_t len, uint64_t value) {
bool first = true;
std::string s;
for (size_t i = 0; i < len; i++) {
const Field f = fields[i];
if ((value & f.mask) == f.value) {
if (!first) {
s += "|";
}
s += f.name;
first = false;
value &= ~f.mask;
}
}
if (value) {
if (!first) {
s += "|";
}
absl::StrAppend(&s, value);
}
return s;
}
const Field kIflagFields[] = {
{"IGNBRK", IGNBRK, IGNBRK}, {"BRKINT", BRKINT, BRKINT},
{"IGNPAR", IGNPAR, IGNPAR}, {"PARMRK", PARMRK, PARMRK},
{"INPCK", INPCK, INPCK}, {"ISTRIP", ISTRIP, ISTRIP},
{"INLCR", INLCR, INLCR}, {"IGNCR", IGNCR, IGNCR},
{"ICRNL", ICRNL, ICRNL}, {"IUCLC", IUCLC, IUCLC},
{"IXON", IXON, IXON}, {"IXANY", IXANY, IXANY},
{"IXOFF", IXOFF, IXOFF}, {"IMAXBEL", IMAXBEL, IMAXBEL},
{"IUTF8", IUTF8, IUTF8},
};
const Field kOflagFields[] = {
{"OPOST", OPOST, OPOST}, {"OLCUC", OLCUC, OLCUC},
{"ONLCR", ONLCR, ONLCR}, {"OCRNL", OCRNL, OCRNL},
{"ONOCR", ONOCR, ONOCR}, {"ONLRET", ONLRET, ONLRET},
{"OFILL", OFILL, OFILL}, {"OFDEL", OFDEL, OFDEL},
{"NL0", NLDLY, NL0}, {"NL1", NLDLY, NL1},
{"CR0", CRDLY, CR0}, {"CR1", CRDLY, CR1},
{"CR2", CRDLY, CR2}, {"CR3", CRDLY, CR3},
{"TAB0", TABDLY, TAB0}, {"TAB1", TABDLY, TAB1},
{"TAB2", TABDLY, TAB2}, {"TAB3", TABDLY, TAB3},
{"BS0", BSDLY, BS0}, {"BS1", BSDLY, BS1},
{"FF0", FFDLY, FF0}, {"FF1", FFDLY, FF1},
{"VT0", VTDLY, VT0}, {"VT1", VTDLY, VT1},
{"XTABS", XTABS, XTABS},
};
#ifndef IBSHIFT
// Shift from CBAUD to CIBAUD.
#define IBSHIFT 16
#endif
const Field kCflagFields[] = {
{"B0", CBAUD, B0},
{"B50", CBAUD, B50},
{"B75", CBAUD, B75},
{"B110", CBAUD, B110},
{"B134", CBAUD, B134},
{"B150", CBAUD, B150},
{"B200", CBAUD, B200},
{"B300", CBAUD, B300},
{"B600", CBAUD, B600},
{"B1200", CBAUD, B1200},
{"B1800", CBAUD, B1800},
{"B2400", CBAUD, B2400},
{"B4800", CBAUD, B4800},
{"B9600", CBAUD, B9600},
{"B19200", CBAUD, B19200},
{"B38400", CBAUD, B38400},
{"CS5", CSIZE, CS5},
{"CS6", CSIZE, CS6},
{"CS7", CSIZE, CS7},
{"CS8", CSIZE, CS8},
{"CSTOPB", CSTOPB, CSTOPB},
{"CREAD", CREAD, CREAD},
{"PARENB", PARENB, PARENB},
{"PARODD", PARODD, PARODD},
{"HUPCL", HUPCL, HUPCL},
{"CLOCAL", CLOCAL, CLOCAL},
{"B57600", CBAUD, B57600},
{"B115200", CBAUD, B115200},
{"B230400", CBAUD, B230400},
{"B460800", CBAUD, B460800},
{"B500000", CBAUD, B500000},
{"B576000", CBAUD, B576000},
{"B921600", CBAUD, B921600},
{"B1000000", CBAUD, B1000000},
{"B1152000", CBAUD, B1152000},
{"B1500000", CBAUD, B1500000},
{"B2000000", CBAUD, B2000000},
{"B2500000", CBAUD, B2500000},
{"B3000000", CBAUD, B3000000},
{"B3500000", CBAUD, B3500000},
{"B4000000", CBAUD, B4000000},
{"CMSPAR", CMSPAR, CMSPAR},
{"CRTSCTS", CRTSCTS, CRTSCTS},
{"IB0", CIBAUD, B0 << IBSHIFT},
{"IB50", CIBAUD, B50 << IBSHIFT},
{"IB75", CIBAUD, B75 << IBSHIFT},
{"IB110", CIBAUD, B110 << IBSHIFT},
{"IB134", CIBAUD, B134 << IBSHIFT},
{"IB150", CIBAUD, B150 << IBSHIFT},
{"IB200", CIBAUD, B200 << IBSHIFT},
{"IB300", CIBAUD, B300 << IBSHIFT},
{"IB600", CIBAUD, B600 << IBSHIFT},
{"IB1200", CIBAUD, B1200 << IBSHIFT},
{"IB1800", CIBAUD, B1800 << IBSHIFT},
{"IB2400", CIBAUD, B2400 << IBSHIFT},
{"IB4800", CIBAUD, B4800 << IBSHIFT},
{"IB9600", CIBAUD, B9600 << IBSHIFT},
{"IB19200", CIBAUD, B19200 << IBSHIFT},
{"IB38400", CIBAUD, B38400 << IBSHIFT},
{"IB57600", CIBAUD, B57600 << IBSHIFT},
{"IB115200", CIBAUD, B115200 << IBSHIFT},
{"IB230400", CIBAUD, B230400 << IBSHIFT},
{"IB460800", CIBAUD, B460800 << IBSHIFT},
{"IB500000", CIBAUD, B500000 << IBSHIFT},
{"IB576000", CIBAUD, B576000 << IBSHIFT},
{"IB921600", CIBAUD, B921600 << IBSHIFT},
{"IB1000000", CIBAUD, B1000000 << IBSHIFT},
{"IB1152000", CIBAUD, B1152000 << IBSHIFT},
{"IB1500000", CIBAUD, B1500000 << IBSHIFT},
{"IB2000000", CIBAUD, B2000000 << IBSHIFT},
{"IB2500000", CIBAUD, B2500000 << IBSHIFT},
{"IB3000000", CIBAUD, B3000000 << IBSHIFT},
{"IB3500000", CIBAUD, B3500000 << IBSHIFT},
{"IB4000000", CIBAUD, B4000000 << IBSHIFT},
};
const Field kLflagFields[] = {
{"ISIG", ISIG, ISIG}, {"ICANON", ICANON, ICANON},
{"XCASE", XCASE, XCASE}, {"ECHO", ECHO, ECHO},
{"ECHOE", ECHOE, ECHOE}, {"ECHOK", ECHOK, ECHOK},
{"ECHONL", ECHONL, ECHONL}, {"NOFLSH", NOFLSH, NOFLSH},
{"TOSTOP", TOSTOP, TOSTOP}, {"ECHOCTL", ECHOCTL, ECHOCTL},
{"ECHOPRT", ECHOPRT, ECHOPRT}, {"ECHOKE", ECHOKE, ECHOKE},
{"FLUSHO", FLUSHO, FLUSHO}, {"PENDIN", PENDIN, PENDIN},
{"IEXTEN", IEXTEN, IEXTEN}, {"EXTPROC", EXTPROC, EXTPROC},
};
std::string FormatCC(char c) {
if (isgraph(c)) {
return std::string(1, c);
} else if (c == ' ') {
return " ";
} else if (c == '\t') {
return "\\t";
} else if (c == '\r') {
return "\\r";
} else if (c == '\n') {
return "\\n";
} else if (c == '\0') {
return "\\0";
} else if (IsControlCharacter(c)) {
return absl::StrCat("^", std::string(1, FromControlCharacter(c)));
}
return absl::StrCat("\\x", absl::Hex(c));
}
std::ostream& operator<<(std::ostream& os, struct kernel_termios const& a) {
os << "{ c_iflag = "
<< ParseFields(kIflagFields, ABSL_ARRAYSIZE(kIflagFields), a.c_iflag);
os << ", c_oflag = "
<< ParseFields(kOflagFields, ABSL_ARRAYSIZE(kOflagFields), a.c_oflag);
os << ", c_cflag = "
<< ParseFields(kCflagFields, ABSL_ARRAYSIZE(kCflagFields), a.c_cflag);
os << ", c_lflag = "
<< ParseFields(kLflagFields, ABSL_ARRAYSIZE(kLflagFields), a.c_lflag);
os << ", c_line = " << a.c_line;
os << ", c_cc = { [VINTR] = '" << FormatCC(a.c_cc[VINTR]);
os << "', [VQUIT] = '" << FormatCC(a.c_cc[VQUIT]);
os << "', [VERASE] = '" << FormatCC(a.c_cc[VERASE]);
os << "', [VKILL] = '" << FormatCC(a.c_cc[VKILL]);
os << "', [VEOF] = '" << FormatCC(a.c_cc[VEOF]);
os << "', [VTIME] = '" << static_cast<int>(a.c_cc[VTIME]);
os << "', [VMIN] = " << static_cast<int>(a.c_cc[VMIN]);
os << ", [VSWTC] = '" << FormatCC(a.c_cc[VSWTC]);
os << "', [VSTART] = '" << FormatCC(a.c_cc[VSTART]);
os << "', [VSTOP] = '" << FormatCC(a.c_cc[VSTOP]);
os << "', [VSUSP] = '" << FormatCC(a.c_cc[VSUSP]);
os << "', [VEOL] = '" << FormatCC(a.c_cc[VEOL]);
os << "', [VREPRINT] = '" << FormatCC(a.c_cc[VREPRINT]);
os << "', [VDISCARD] = '" << FormatCC(a.c_cc[VDISCARD]);
os << "', [VWERASE] = '" << FormatCC(a.c_cc[VWERASE]);
os << "', [VLNEXT] = '" << FormatCC(a.c_cc[VLNEXT]);
os << "', [VEOL2] = '" << FormatCC(a.c_cc[VEOL2]);
os << "'}";
return os;
}
// Return the default termios settings for a new terminal.
struct kernel_termios DefaultTermios() {
struct kernel_termios t = {};
t.c_iflag = IXON | ICRNL;
t.c_oflag = OPOST | ONLCR;
t.c_cflag = B38400 | CSIZE | CS8 | CREAD;
t.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK | ECHOCTL | ECHOKE | IEXTEN;
t.c_line = 0;
t.c_cc[VINTR] = ControlCharacter('C');
t.c_cc[VQUIT] = ControlCharacter('\\');
t.c_cc[VERASE] = '\x7f';
t.c_cc[VKILL] = ControlCharacter('U');
t.c_cc[VEOF] = ControlCharacter('D');
t.c_cc[VTIME] = '\0';
t.c_cc[VMIN] = 1;
t.c_cc[VSWTC] = '\0';
t.c_cc[VSTART] = ControlCharacter('Q');
t.c_cc[VSTOP] = ControlCharacter('S');
t.c_cc[VSUSP] = ControlCharacter('Z');
t.c_cc[VEOL] = '\0';
t.c_cc[VREPRINT] = ControlCharacter('R');
t.c_cc[VDISCARD] = ControlCharacter('O');
t.c_cc[VWERASE] = ControlCharacter('W');
t.c_cc[VLNEXT] = ControlCharacter('V');
t.c_cc[VEOL2] = '\0';
return t;
}
// PollAndReadFd tries to read count bytes from buf within timeout.
//
// Returns a partial read if some bytes were read.
//
// fd must be non-blocking.
PosixErrorOr<size_t> PollAndReadFd(int fd, void* buf, size_t count,
absl::Duration timeout) {
absl::Time end = absl::Now() + timeout;
size_t completed = 0;
absl::Duration remaining;
while ((remaining = end - absl::Now()) > absl::ZeroDuration()) {
struct pollfd pfd = {fd, POLLIN, 0};
int ret = RetryEINTR(poll)(&pfd, 1, absl::ToInt64Milliseconds(remaining));
if (ret < 0) {
return PosixError(errno, "poll failed");
} else if (ret == 0) {
// Timed out.
continue;
} else if (ret != 1) {
return PosixError(EINVAL, absl::StrCat("Bad poll ret ", ret));
}
ssize_t n =
ReadFd(fd, static_cast<char*>(buf) + completed, count - completed);
if (n < 0) {
return PosixError(errno, "read failed");
}
completed += n;
if (completed >= count) {
return completed;
}
}
if (completed) {
return completed;
}
return PosixError(ETIMEDOUT, "Poll timed out");
}
// Opens the slave end of the passed master as R/W and nonblocking.
PosixErrorOr<FileDescriptor> OpenSlave(const FileDescriptor& master) {
// Get pty index.
int n;
int ret = ioctl(master.get(), TIOCGPTN, &n);
if (ret < 0) {
return PosixError(errno, "ioctl(TIOCGPTN) failed");
}
// Unlock pts.
int unlock = 0;
ret = ioctl(master.get(), TIOCSPTLCK, &unlock);
if (ret < 0) {
return PosixError(errno, "ioctl(TIOSPTLCK) failed");
}
return Open(absl::StrCat("/dev/pts/", n), O_RDWR | O_NONBLOCK);
}
TEST(BasicPtyTest, StatUnopenedMaster) {
struct stat s;
ASSERT_THAT(stat("/dev/ptmx", &s), SyscallSucceeds());
EXPECT_EQ(s.st_rdev, makedev(TTYAUX_MAJOR, kPtmxMinor));
EXPECT_EQ(s.st_size, 0);
EXPECT_EQ(s.st_blocks, 0);
// ptmx attached to a specific devpts mount uses block size 1024. See
// fs/devpts/inode.c:devpts_fill_super.
//
// The global ptmx device uses the block size of the filesystem it is created
// on (which is usually 4096 for disk filesystems).
EXPECT_THAT(s.st_blksize, AnyOf(Eq(1024), Eq(4096)));
}
// Waits for count bytes to be readable from fd. Unlike poll, which can return
// before all data is moved into a pty's read buffer, this function waits for
// all count bytes to become readable.
PosixErrorOr<int> WaitUntilReceived(int fd, int count) {
int buffered = -1;
absl::Duration remaining;
absl::Time end = absl::Now() + kTimeout;
while ((remaining = end - absl::Now()) > absl::ZeroDuration()) {
if (ioctl(fd, FIONREAD, &buffered) < 0) {
return PosixError(errno, "failed FIONREAD ioctl");
}
if (buffered >= count) {
return buffered;
}
absl::SleepFor(absl::Milliseconds(500));
}
return PosixError(
ETIMEDOUT,
absl::StrFormat(
"FIONREAD timed out, receiving only %d of %d expected bytes",
buffered, count));
}
// Verifies that there is nothing left to read from fd.
void ExpectFinished(const FileDescriptor& fd) {
// Nothing more to read.
char c;
EXPECT_THAT(ReadFd(fd.get(), &c, 1), SyscallFailsWithErrno(EAGAIN));
}
// Verifies that we can read expected bytes from fd into buf.
void ExpectReadable(const FileDescriptor& fd, int expected, char* buf) {
size_t n = ASSERT_NO_ERRNO_AND_VALUE(
PollAndReadFd(fd.get(), buf, expected, kTimeout));
EXPECT_EQ(expected, n);
}
TEST(BasicPtyTest, OpenMasterSlave) {
FileDescriptor master = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/ptmx", O_RDWR));
FileDescriptor slave = ASSERT_NO_ERRNO_AND_VALUE(OpenSlave(master));
}
// The slave entry in /dev/pts/ disappears when the master is closed, even if
// the slave is still open.
TEST(BasicPtyTest, SlaveEntryGoneAfterMasterClose) {
FileDescriptor master = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/ptmx", O_RDWR));
FileDescriptor slave = ASSERT_NO_ERRNO_AND_VALUE(OpenSlave(master));
// Get pty index.
int index = -1;
ASSERT_THAT(ioctl(master.get(), TIOCGPTN, &index), SyscallSucceeds());
std::string path = absl::StrCat("/dev/pts/", index);
struct stat st;
EXPECT_THAT(stat(path.c_str(), &st), SyscallSucceeds());
master.reset();
EXPECT_THAT(stat(path.c_str(), &st), SyscallFailsWithErrno(ENOENT));
}
TEST(BasicPtyTest, Getdents) {
FileDescriptor master1 = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/ptmx", O_RDWR));
int index1 = -1;
ASSERT_THAT(ioctl(master1.get(), TIOCGPTN, &index1), SyscallSucceeds());
FileDescriptor slave1 = ASSERT_NO_ERRNO_AND_VALUE(OpenSlave(master1));
FileDescriptor master2 = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/ptmx", O_RDWR));
int index2 = -1;
ASSERT_THAT(ioctl(master2.get(), TIOCGPTN, &index2), SyscallSucceeds());
FileDescriptor slave2 = ASSERT_NO_ERRNO_AND_VALUE(OpenSlave(master2));
// The directory contains ptmx, index1, and index2. (Plus any additional PTYs
// unrelated to this test.)
std::vector<std::string> contents =
ASSERT_NO_ERRNO_AND_VALUE(ListDir("/dev/pts/", true));
EXPECT_THAT(contents, Contains(absl::StrCat(index1)));
EXPECT_THAT(contents, Contains(absl::StrCat(index2)));
master2.reset();
// The directory contains ptmx and index1, but not index2 since the master is
// closed. (Plus any additional PTYs unrelated to this test.)
contents = ASSERT_NO_ERRNO_AND_VALUE(ListDir("/dev/pts/", true));
EXPECT_THAT(contents, Contains(absl::StrCat(index1)));
EXPECT_THAT(contents, Not(Contains(absl::StrCat(index2))));
// N.B. devpts supports legacy "single-instance" mode and new "multi-instance"
// mode. In legacy mode, devpts does not contain a "ptmx" device (the distro
// must use mknod to create it somewhere, presumably /dev/ptmx).
// Multi-instance mode does include a "ptmx" device tied to that mount.
//
// We don't check for the presence or absence of "ptmx", as distros vary in
// their usage of the two modes.
}
class PtyTest : public ::testing::Test {
protected:
void SetUp() override {
master_ = ASSERT_NO_ERRNO_AND_VALUE(Open("/dev/ptmx", O_RDWR | O_NONBLOCK));
slave_ = ASSERT_NO_ERRNO_AND_VALUE(OpenSlave(master_));
}
void DisableCanonical() {
struct kernel_termios t = {};
EXPECT_THAT(ioctl(slave_.get(), TCGETS, &t), SyscallSucceeds());
t.c_lflag &= ~ICANON;
EXPECT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
}
void EnableCanonical() {
struct kernel_termios t = {};
EXPECT_THAT(ioctl(slave_.get(), TCGETS, &t), SyscallSucceeds());
t.c_lflag |= ICANON;
EXPECT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
}
// Master and slave ends of the PTY. Non-blocking.
FileDescriptor master_;
FileDescriptor slave_;
};
// Master to slave sanity test.
TEST_F(PtyTest, WriteMasterToSlave) {
// N.B. by default, the slave reads nothing until the master writes a newline.
constexpr char kBuf[] = "hello\n";
EXPECT_THAT(WriteFd(master_.get(), kBuf, sizeof(kBuf) - 1),
SyscallSucceedsWithValue(sizeof(kBuf) - 1));
// Linux moves data from the master to the slave via async work scheduled via
// tty_flip_buffer_push. Since it is asynchronous, the data may not be
// available for reading immediately. Instead we must poll and assert that it
// becomes available "soon".
char buf[sizeof(kBuf)] = {};
ExpectReadable(slave_, sizeof(buf) - 1, buf);
EXPECT_EQ(memcmp(buf, kBuf, sizeof(kBuf)), 0);
}
// Slave to master sanity test.
TEST_F(PtyTest, WriteSlaveToMaster) {
// N.B. by default, the master reads nothing until the slave writes a newline,
// and the master gets a carriage return.
constexpr char kInput[] = "hello\n";
constexpr char kExpected[] = "hello\r\n";
EXPECT_THAT(WriteFd(slave_.get(), kInput, sizeof(kInput) - 1),
SyscallSucceedsWithValue(sizeof(kInput) - 1));
// Linux moves data from the master to the slave via async work scheduled via
// tty_flip_buffer_push. Since it is asynchronous, the data may not be
// available for reading immediately. Instead we must poll and assert that it
// becomes available "soon".
char buf[sizeof(kExpected)] = {};
ExpectReadable(master_, sizeof(buf) - 1, buf);
EXPECT_EQ(memcmp(buf, kExpected, sizeof(kExpected)), 0);
}
TEST_F(PtyTest, WriteInvalidUTF8) {
char c = 0xff;
ASSERT_THAT(syscall(__NR_write, master_.get(), &c, sizeof(c)),
SyscallSucceedsWithValue(sizeof(c)));
}
// Both the master and slave report the standard default termios settings.
//
// Note that TCGETS on the master actually redirects to the slave (see comment
// on MasterTermiosUnchangable).
TEST_F(PtyTest, DefaultTermios) {
struct kernel_termios t = {};
EXPECT_THAT(ioctl(slave_.get(), TCGETS, &t), SyscallSucceeds());
EXPECT_EQ(t, DefaultTermios());
EXPECT_THAT(ioctl(master_.get(), TCGETS, &t), SyscallSucceeds());
EXPECT_EQ(t, DefaultTermios());
}
// Changing termios from the master actually affects the slave.
//
// TCSETS on the master actually redirects to the slave (see comment on
// MasterTermiosUnchangable).
TEST_F(PtyTest, TermiosAffectsSlave) {
struct kernel_termios master_termios = {};
EXPECT_THAT(ioctl(master_.get(), TCGETS, &master_termios), SyscallSucceeds());
master_termios.c_lflag ^= ICANON;
EXPECT_THAT(ioctl(master_.get(), TCSETS, &master_termios), SyscallSucceeds());
struct kernel_termios slave_termios = {};
EXPECT_THAT(ioctl(slave_.get(), TCGETS, &slave_termios), SyscallSucceeds());
EXPECT_EQ(master_termios, slave_termios);
}
// The master end of the pty has termios:
//
// struct kernel_termios t = {
// .c_iflag = 0;
// .c_oflag = 0;
// .c_cflag = B38400 | CS8 | CREAD;
// .c_lflag = 0;
// .c_cc = /* same as DefaultTermios */
// }
//
// (From drivers/tty/pty.c:unix98_pty_init)
//
// All termios control ioctls on the master actually redirect to the slave
// (drivers/tty/tty_ioctl.c:tty_mode_ioctl), making it impossible to change the
// master termios.
//
// Verify this by setting ICRNL (which rewrites input \r to \n) and verify that
// it has no effect on the master.
TEST_F(PtyTest, MasterTermiosUnchangable) {
char c = '\r';
ASSERT_THAT(WriteFd(slave_.get(), &c, 1), SyscallSucceedsWithValue(1));
ExpectReadable(master_, 1, &c);
EXPECT_EQ(c, '\r'); // ICRNL had no effect!
ExpectFinished(master_);
}
// ICRNL rewrites input \r to \n.
TEST_F(PtyTest, TermiosICRNL) {
struct kernel_termios t = DefaultTermios();
t.c_iflag |= ICRNL;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
char c = '\r';
ASSERT_THAT(WriteFd(master_.get(), &c, 1), SyscallSucceedsWithValue(1));
ExpectReadable(slave_, 1, &c);
EXPECT_EQ(c, '\n');
ExpectFinished(slave_);
}
// ONLCR rewrites output \n to \r\n.
TEST_F(PtyTest, TermiosONLCR) {
struct kernel_termios t = DefaultTermios();
t.c_oflag |= ONLCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
char c = '\n';
ASSERT_THAT(WriteFd(slave_.get(), &c, 1), SyscallSucceedsWithValue(1));
// Extra byte for NUL for EXPECT_STREQ.
char buf[3] = {};
ExpectReadable(master_, 2, buf);
EXPECT_STREQ(buf, "\r\n");
ExpectFinished(slave_);
}
TEST_F(PtyTest, TermiosIGNCR) {
struct kernel_termios t = DefaultTermios();
t.c_iflag |= IGNCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
char c = '\r';
ASSERT_THAT(WriteFd(master_.get(), &c, 1), SyscallSucceedsWithValue(1));
// Nothing to read.
ASSERT_THAT(PollAndReadFd(slave_.get(), &c, 1, kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
}
// Test that we can successfully poll for readable data from the slave.
TEST_F(PtyTest, TermiosPollSlave) {
struct kernel_termios t = DefaultTermios();
t.c_iflag |= IGNCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
absl::Notification notify;
int sfd = slave_.get();
ScopedThread th([sfd, &notify]() {
notify.Notify();
// Poll on the reader fd with POLLIN event.
struct pollfd poll_fd = {sfd, POLLIN, 0};
EXPECT_THAT(
RetryEINTR(poll)(&poll_fd, 1, absl::ToInt64Milliseconds(kTimeout)),
SyscallSucceedsWithValue(1));
// Should trigger POLLIN event.
EXPECT_EQ(poll_fd.revents & POLLIN, POLLIN);
});
notify.WaitForNotification();
// Sleep ensures that poll begins waiting before we write to the FD.
absl::SleepFor(absl::Seconds(1));
char s[] = "foo\n";
ASSERT_THAT(WriteFd(master_.get(), s, strlen(s) + 1), SyscallSucceeds());
}
// Test that we can successfully poll for readable data from the master.
TEST_F(PtyTest, TermiosPollMaster) {
struct kernel_termios t = DefaultTermios();
t.c_iflag |= IGNCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(master_.get(), TCSETS, &t), SyscallSucceeds());
absl::Notification notify;
int mfd = master_.get();
ScopedThread th([mfd, &notify]() {
notify.Notify();
// Poll on the reader fd with POLLIN event.
struct pollfd poll_fd = {mfd, POLLIN, 0};
EXPECT_THAT(
RetryEINTR(poll)(&poll_fd, 1, absl::ToInt64Milliseconds(kTimeout)),
SyscallSucceedsWithValue(1));
// Should trigger POLLIN event.
EXPECT_EQ(poll_fd.revents & POLLIN, POLLIN);
});
notify.WaitForNotification();
// Sleep ensures that poll begins waiting before we write to the FD.
absl::SleepFor(absl::Seconds(1));
char s[] = "foo\n";
ASSERT_THAT(WriteFd(slave_.get(), s, strlen(s) + 1), SyscallSucceeds());
}
TEST_F(PtyTest, TermiosINLCR) {
struct kernel_termios t = DefaultTermios();
t.c_iflag |= INLCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
char c = '\n';
ASSERT_THAT(WriteFd(master_.get(), &c, 1), SyscallSucceedsWithValue(1));
ExpectReadable(slave_, 1, &c);
EXPECT_EQ(c, '\r');
ExpectFinished(slave_);
}
TEST_F(PtyTest, TermiosONOCR) {
struct kernel_termios t = DefaultTermios();
t.c_oflag |= ONOCR;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
// The terminal is at column 0, so there should be no CR to read.
char c = '\r';
ASSERT_THAT(WriteFd(slave_.get(), &c, 1), SyscallSucceedsWithValue(1));
// Nothing to read.
ASSERT_THAT(PollAndReadFd(master_.get(), &c, 1, kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
// This time the column is greater than 0, so we should be able to read the CR
// out of the other end.
constexpr char kInput[] = "foo\r";
constexpr int kInputSize = sizeof(kInput) - 1;
ASSERT_THAT(WriteFd(slave_.get(), kInput, kInputSize),
SyscallSucceedsWithValue(kInputSize));
char buf[kInputSize] = {};
ExpectReadable(master_, kInputSize, buf);
EXPECT_EQ(memcmp(buf, kInput, kInputSize), 0);
ExpectFinished(master_);
// Terminal should be at column 0 again, so no CR can be read.
ASSERT_THAT(WriteFd(slave_.get(), &c, 1), SyscallSucceedsWithValue(1));
// Nothing to read.
ASSERT_THAT(PollAndReadFd(master_.get(), &c, 1, kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
}
TEST_F(PtyTest, TermiosOCRNL) {
struct kernel_termios t = DefaultTermios();
t.c_oflag |= OCRNL;
t.c_lflag &= ~ICANON; // for byte-by-byte reading.
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
// The terminal is at column 0, so there should be no CR to read.
char c = '\r';
ASSERT_THAT(WriteFd(slave_.get(), &c, 1), SyscallSucceedsWithValue(1));
ExpectReadable(master_, 1, &c);
EXPECT_EQ(c, '\n');
ExpectFinished(master_);
}
// Tests that VEOL is disabled when we start, and that we can set it to enable
// it.
TEST_F(PtyTest, VEOLTermination) {
// Write a few bytes ending with '\0', and confirm that we can't read.
constexpr char kInput[] = "hello";
ASSERT_THAT(WriteFd(master_.get(), kInput, sizeof(kInput)),
SyscallSucceedsWithValue(sizeof(kInput)));
char buf[sizeof(kInput)] = {};
ASSERT_THAT(PollAndReadFd(slave_.get(), buf, sizeof(kInput), kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
// Set the EOL character to '=' and write it.
constexpr char delim = '=';
struct kernel_termios t = DefaultTermios();
t.c_cc[VEOL] = delim;
ASSERT_THAT(ioctl(slave_.get(), TCSETS, &t), SyscallSucceeds());
ASSERT_THAT(WriteFd(master_.get(), &delim, 1), SyscallSucceedsWithValue(1));
// Now we can read, as sending EOL caused the line to become available.
ExpectReadable(slave_, sizeof(kInput), buf);
EXPECT_EQ(memcmp(buf, kInput, sizeof(kInput)), 0);
ExpectReadable(slave_, 1, buf);
EXPECT_EQ(buf[0], '=');
ExpectFinished(slave_);
}
// Tests that we can write more than the 4096 character limit, then a
// terminating character, then read out just the first 4095 bytes plus the
// terminator.
TEST_F(PtyTest, CanonBigWrite) {
constexpr int kWriteLen = kMaxLineSize + 4;
char input[kWriteLen];
memset(input, 'M', kWriteLen - 1);
input[kWriteLen - 1] = '\n';
ASSERT_THAT(WriteFd(master_.get(), input, kWriteLen),
SyscallSucceedsWithValue(kWriteLen));
// We can read the line.
char buf[kMaxLineSize] = {};
ExpectReadable(slave_, kMaxLineSize, buf);
ExpectFinished(slave_);
}
// Tests that data written in canonical mode can be read immediately once
// switched to noncanonical mode.
TEST_F(PtyTest, SwitchCanonToNoncanon) {
// Write a few bytes without a terminating character, switch to noncanonical
// mode, and read them.
constexpr char kInput[] = "hello";
ASSERT_THAT(WriteFd(master_.get(), kInput, sizeof(kInput)),
SyscallSucceedsWithValue(sizeof(kInput)));
// Nothing available yet.
char buf[sizeof(kInput)] = {};
ASSERT_THAT(PollAndReadFd(slave_.get(), buf, sizeof(kInput), kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
DisableCanonical();
ExpectReadable(slave_, sizeof(kInput), buf);
EXPECT_STREQ(buf, kInput);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchCanonToNonCanonNewline) {
// Write a few bytes with a terminating character.
constexpr char kInput[] = "hello\n";
ASSERT_THAT(WriteFd(master_.get(), kInput, sizeof(kInput)),
SyscallSucceedsWithValue(sizeof(kInput)));
DisableCanonical();
// We can read the line.
char buf[sizeof(kInput)] = {};
ExpectReadable(slave_, sizeof(kInput), buf);
EXPECT_STREQ(buf, kInput);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchNoncanonToCanonNewlineBig) {
DisableCanonical();
// Write more than the maximum line size, then write a delimiter.
constexpr int kWriteLen = 4100;
char input[kWriteLen];
memset(input, 'M', kWriteLen);
ASSERT_THAT(WriteFd(master_.get(), input, kWriteLen),
SyscallSucceedsWithValue(kWriteLen));
// Wait for the input queue to fill.
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), kMaxLineSize - 1));
constexpr char delim = '\n';
ASSERT_THAT(WriteFd(master_.get(), &delim, 1), SyscallSucceedsWithValue(1));
EnableCanonical();
// We can read the line.
char buf[kMaxLineSize] = {};
ExpectReadable(slave_, kMaxLineSize - 1, buf);
// We can also read the remaining characters.
ExpectReadable(slave_, 6, buf);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchNoncanonToCanonNoNewline) {
DisableCanonical();
// Write a few bytes without a terminating character.
// mode, and read them.
constexpr char kInput[] = "hello";
ASSERT_THAT(WriteFd(master_.get(), kInput, sizeof(kInput) - 1),
SyscallSucceedsWithValue(sizeof(kInput) - 1));
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), sizeof(kInput) - 1));
EnableCanonical();
// We can read the line.
char buf[sizeof(kInput)] = {};
ExpectReadable(slave_, sizeof(kInput) - 1, buf);
EXPECT_STREQ(buf, kInput);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchNoncanonToCanonNoNewlineBig) {
DisableCanonical();
// Write a few bytes without a terminating character.
// mode, and read them.
constexpr int kWriteLen = 4100;
char input[kWriteLen];
memset(input, 'M', kWriteLen);
ASSERT_THAT(WriteFd(master_.get(), input, kWriteLen),
SyscallSucceedsWithValue(kWriteLen));
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), kMaxLineSize - 1));
EnableCanonical();
// We can read the line.
char buf[kMaxLineSize] = {};
ExpectReadable(slave_, kMaxLineSize - 1, buf);
ExpectFinished(slave_);
}
// Tests that we can write over the 4095 noncanonical limit, then read out
// everything.
TEST_F(PtyTest, NoncanonBigWrite) {
DisableCanonical();
// Write well over the 4095 internal buffer limit.
constexpr char kInput = 'M';
constexpr int kInputSize = kMaxLineSize * 2;
for (int i = 0; i < kInputSize; i++) {
// This makes too many syscalls for save/restore.
const DisableSave ds;
ASSERT_THAT(WriteFd(master_.get(), &kInput, sizeof(kInput)),
SyscallSucceedsWithValue(sizeof(kInput)));
}
// We should be able to read out everything. Sleep a bit so that Linux has a
// chance to move data from the master to the slave.
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), kMaxLineSize - 1));
for (int i = 0; i < kInputSize; i++) {
// This makes too many syscalls for save/restore.
const DisableSave ds;
char c;
ExpectReadable(slave_, 1, &c);
ASSERT_EQ(c, kInput);
}
ExpectFinished(slave_);
}
// ICANON doesn't make input available until a line delimiter is typed.
//
// Test newline.
TEST_F(PtyTest, TermiosICANONNewline) {
char input[3] = {'a', 'b', 'c'};
ASSERT_THAT(WriteFd(master_.get(), input, sizeof(input)),
SyscallSucceedsWithValue(sizeof(input)));
// Extra bytes for newline (written later) and NUL for EXPECT_STREQ.
char buf[5] = {};
// Nothing available yet.
ASSERT_THAT(PollAndReadFd(slave_.get(), buf, sizeof(input), kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
char delim = '\n';
ASSERT_THAT(WriteFd(master_.get(), &delim, 1), SyscallSucceedsWithValue(1));
// Now it is available.
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), sizeof(input) + 1));
ExpectReadable(slave_, sizeof(input) + 1, buf);
EXPECT_STREQ(buf, "abc\n");
ExpectFinished(slave_);
}
// ICANON doesn't make input available until a line delimiter is typed.
//
// Test EOF (^D).
TEST_F(PtyTest, TermiosICANONEOF) {
char input[3] = {'a', 'b', 'c'};
ASSERT_THAT(WriteFd(master_.get(), input, sizeof(input)),
SyscallSucceedsWithValue(sizeof(input)));
// Extra byte for NUL for EXPECT_STREQ.
char buf[4] = {};
// Nothing available yet.
ASSERT_THAT(PollAndReadFd(slave_.get(), buf, sizeof(input), kTimeout),
PosixErrorIs(ETIMEDOUT, ::testing::StrEq("Poll timed out")));
char delim = ControlCharacter('D');
ASSERT_THAT(WriteFd(master_.get(), &delim, 1), SyscallSucceedsWithValue(1));
// Now it is available. Note that ^D is not included.
ExpectReadable(slave_, sizeof(input), buf);
EXPECT_STREQ(buf, "abc");
ExpectFinished(slave_);
}
// ICANON limits us to 4096 bytes including a terminating character. Anything
// after and 4095th character is discarded (although still processed for
// signals and echoing).
TEST_F(PtyTest, CanonDiscard) {
constexpr char kInput = 'M';
constexpr int kInputSize = 4100;
constexpr int kIter = 3;
// A few times write more than the 4096 character maximum, then a newline.
constexpr char delim = '\n';
for (int i = 0; i < kIter; i++) {
// This makes too many syscalls for save/restore.
const DisableSave ds;
for (int i = 0; i < kInputSize; i++) {
ASSERT_THAT(WriteFd(master_.get(), &kInput, sizeof(kInput)),
SyscallSucceedsWithValue(sizeof(kInput)));
}
ASSERT_THAT(WriteFd(master_.get(), &delim, 1), SyscallSucceedsWithValue(1));
}
// There should be multiple truncated lines available to read.
for (int i = 0; i < kIter; i++) {
char buf[kInputSize] = {};
ExpectReadable(slave_, kMaxLineSize, buf);
EXPECT_EQ(buf[kMaxLineSize - 1], delim);
EXPECT_EQ(buf[kMaxLineSize - 2], kInput);
}
ExpectFinished(slave_);
}
TEST_F(PtyTest, CanonMultiline) {
constexpr char kInput1[] = "GO\n";
constexpr char kInput2[] = "BLUE\n";
// Write both lines.
ASSERT_THAT(WriteFd(master_.get(), kInput1, sizeof(kInput1) - 1),
SyscallSucceedsWithValue(sizeof(kInput1) - 1));
ASSERT_THAT(WriteFd(master_.get(), kInput2, sizeof(kInput2) - 1),
SyscallSucceedsWithValue(sizeof(kInput2) - 1));
// Get the first line.
char line1[8] = {};
ExpectReadable(slave_, sizeof(kInput1) - 1, line1);
EXPECT_STREQ(line1, kInput1);
// Get the second line.
char line2[8] = {};
ExpectReadable(slave_, sizeof(kInput2) - 1, line2);
EXPECT_STREQ(line2, kInput2);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchNoncanonToCanonMultiline) {
DisableCanonical();
constexpr char kInput1[] = "GO\n";
constexpr char kInput2[] = "BLUE\n";
constexpr char kExpected[] = "GO\nBLUE\n";
// Write both lines.
ASSERT_THAT(WriteFd(master_.get(), kInput1, sizeof(kInput1) - 1),
SyscallSucceedsWithValue(sizeof(kInput1) - 1));
ASSERT_THAT(WriteFd(master_.get(), kInput2, sizeof(kInput2) - 1),
SyscallSucceedsWithValue(sizeof(kInput2) - 1));
ASSERT_NO_ERRNO(
WaitUntilReceived(slave_.get(), sizeof(kInput1) + sizeof(kInput2) - 2));
EnableCanonical();
// Get all together as one line.
char line[9] = {};
ExpectReadable(slave_, 8, line);
EXPECT_STREQ(line, kExpected);
ExpectFinished(slave_);
}
TEST_F(PtyTest, SwitchTwiceMultiline) {
std::string kInputs[] = {"GO\n", "BLUE\n", "!"};
std::string kExpected = "GO\nBLUE\n!";
// Write each line.
for (std::string input : kInputs) {
ASSERT_THAT(WriteFd(master_.get(), input.c_str(), input.size()),
SyscallSucceedsWithValue(input.size()));
}
DisableCanonical();
// All written characters have to make it into the input queue before
// canonical mode is re-enabled. If the final '!' character hasn't been
// enqueued before canonical mode is re-enabled, it won't be readable.
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), kExpected.size()));
EnableCanonical();
// Get all together as one line.
char line[10] = {};
ExpectReadable(slave_, 9, line);
EXPECT_STREQ(line, kExpected.c_str());
ExpectFinished(slave_);
}
TEST_F(PtyTest, QueueSize) {
// Write the line.
constexpr char kInput1[] = "GO\n";
ASSERT_THAT(WriteFd(master_.get(), kInput1, sizeof(kInput1) - 1),
SyscallSucceedsWithValue(sizeof(kInput1) - 1));
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), sizeof(kInput1) - 1));
// Ensure that writing more (beyond what is readable) does not impact the
// readable size.
char input[kMaxLineSize];
memset(input, 'M', kMaxLineSize);
ASSERT_THAT(WriteFd(master_.get(), input, kMaxLineSize),
SyscallSucceedsWithValue(kMaxLineSize));
int inputBufSize = ASSERT_NO_ERRNO_AND_VALUE(
WaitUntilReceived(slave_.get(), sizeof(kInput1) - 1));
EXPECT_EQ(inputBufSize, sizeof(kInput1) - 1);
}
TEST_F(PtyTest, PartialBadBuffer) {
// Allocate 2 pages.
void* addr = mmap(nullptr, 2 * kPageSize, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
ASSERT_NE(addr, MAP_FAILED);
char* buf = reinterpret_cast<char*>(addr);
// Guard the 2nd page for our read to run into.
ASSERT_THAT(
mprotect(reinterpret_cast<void*>(buf + kPageSize), kPageSize, PROT_NONE),
SyscallSucceeds());
// Leave only one free byte in the buffer.
char* bad_buffer = buf + kPageSize - 1;
// Write to the master.
constexpr char kBuf[] = "hello\n";
constexpr size_t size = sizeof(kBuf) - 1;
EXPECT_THAT(WriteFd(master_.get(), kBuf, size),
SyscallSucceedsWithValue(size));
// Read from the slave into bad_buffer.
ASSERT_NO_ERRNO(WaitUntilReceived(slave_.get(), size));
EXPECT_THAT(ReadFd(slave_.get(), bad_buffer, size),
SyscallFailsWithErrno(EFAULT));
EXPECT_THAT(munmap(addr, 2 * kPageSize), SyscallSucceeds()) << addr;
}
TEST_F(PtyTest, SimpleEcho) {
constexpr char kInput[] = "Mr. Eko";
EXPECT_THAT(WriteFd(master_.get(), kInput, strlen(kInput)),
SyscallSucceedsWithValue(strlen(kInput)));
char buf[100] = {};
ExpectReadable(master_, strlen(kInput), buf);
EXPECT_STREQ(buf, kInput);
ExpectFinished(master_);
}
TEST_F(PtyTest, GetWindowSize) {
struct winsize ws;
ASSERT_THAT(ioctl(slave_.get(), TIOCGWINSZ, &ws), SyscallSucceeds());
EXPECT_EQ(ws.ws_row, 0);
EXPECT_EQ(ws.ws_col, 0);
}
TEST_F(PtyTest, SetSlaveWindowSize) {
constexpr uint16_t kRows = 343;
constexpr uint16_t kCols = 2401;
struct winsize ws = {.ws_row = kRows, .ws_col = kCols};
ASSERT_THAT(ioctl(slave_.get(), TIOCSWINSZ, &ws), SyscallSucceeds());
struct winsize retrieved_ws = {};
ASSERT_THAT(ioctl(master_.get(), TIOCGWINSZ, &retrieved_ws),
SyscallSucceeds());
EXPECT_EQ(retrieved_ws.ws_row, kRows);
EXPECT_EQ(retrieved_ws.ws_col, kCols);
}
TEST_F(PtyTest, SetMasterWindowSize) {
constexpr uint16_t kRows = 343;
constexpr uint16_t kCols = 2401;
struct winsize ws = {.ws_row = kRows, .ws_col = kCols};
ASSERT_THAT(ioctl(master_.get(), TIOCSWINSZ, &ws), SyscallSucceeds());
struct winsize retrieved_ws = {};
ASSERT_THAT(ioctl(slave_.get(), TIOCGWINSZ, &retrieved_ws),
SyscallSucceeds());
EXPECT_EQ(retrieved_ws.ws_row, kRows);
EXPECT_EQ(retrieved_ws.ws_col, kCols);
}
} // namespace
} // namespace testing
} // namespace gvisor