gvisor/pkg/sentry/fs/tty/line_discipline.go

446 lines
13 KiB
Go

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package tty
import (
"bytes"
"unicode/utf8"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/syserror"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
const (
// canonMaxBytes is the number of bytes that fit into a single line of
// terminal input in canonical mode. This corresponds to N_TTY_BUF_SIZE
// in include/linux/tty.h.
canonMaxBytes = 4096
// nonCanonMaxBytes is the maximum number of bytes that can be read at
// a time in noncanonical mode.
nonCanonMaxBytes = canonMaxBytes - 1
spacesPerTab = 8
)
// lineDiscipline dictates how input and output are handled between the
// pseudoterminal (pty) master and slave. It can be configured to alter I/O,
// modify control characters (e.g. Ctrl-C for SIGINT), etc. The following man
// pages are good resources for how to affect the line discipline:
//
// * termios(3)
// * tty_ioctl(4)
//
// This file corresponds most closely to drivers/tty/n_tty.c.
//
// lineDiscipline has a simple structure but supports a multitude of options
// (see the above man pages). It consists of two queues of bytes: one from the
// terminal master to slave (the input queue) and one from slave to master (the
// output queue). When bytes are written to one end of the pty, the line
// discipline reads the bytes, modifies them or takes special action if
// required, and enqueues them to be read by the other end of the pty:
//
// input from terminal +-------------+ input to process (e.g. bash)
// +------------------------>| input queue |---------------------------+
// | (inputQueueWrite) +-------------+ (inputQueueRead) |
// | |
// | v
// masterFD slaveFD
// ^ |
// | |
// | output to terminal +--------------+ output from process |
// +------------------------| output queue |<--------------------------+
// (outputQueueRead) +--------------+ (outputQueueWrite)
//
// Lock order:
// termiosMu
// inQueue.mu
// outQueue.mu
//
// +stateify savable
type lineDiscipline struct {
// sizeMu protects size.
sizeMu sync.Mutex `state:"nosave"`
// size is the terminal size (width and height).
size linux.WindowSize
// inQueue is the input queue of the terminal.
inQueue queue
// outQueue is the output queue of the terminal.
outQueue queue
// termiosMu protects termios.
termiosMu sync.RWMutex `state:"nosave"`
// termios is the terminal configuration used by the lineDiscipline.
termios linux.KernelTermios
// column is the location in a row of the cursor. This is important for
// handling certain special characters like backspace.
column int
// masterWaiter is used to wait on the master end of the TTY.
masterWaiter waiter.Queue `state:"zerovalue"`
// slaveWaiter is used to wait on the slave end of the TTY.
slaveWaiter waiter.Queue `state:"zerovalue"`
}
func newLineDiscipline(termios linux.KernelTermios) *lineDiscipline {
ld := lineDiscipline{termios: termios}
ld.inQueue.transformer = &inputQueueTransformer{}
ld.outQueue.transformer = &outputQueueTransformer{}
return &ld
}
// getTermios gets the linux.Termios for the tty.
func (l *lineDiscipline) getTermios(ctx context.Context, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
// We must copy a Termios struct, not KernelTermios.
t := l.termios.ToTermios()
_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), t, usermem.IOOpts{
AddressSpaceActive: true,
})
return 0, err
}
// setTermios sets a linux.Termios for the tty.
func (l *lineDiscipline) setTermios(ctx context.Context, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
l.termiosMu.Lock()
defer l.termiosMu.Unlock()
oldCanonEnabled := l.termios.LEnabled(linux.ICANON)
// We must copy a Termios struct, not KernelTermios.
var t linux.Termios
_, err := usermem.CopyObjectIn(ctx, io, args[2].Pointer(), &t, usermem.IOOpts{
AddressSpaceActive: true,
})
l.termios.FromTermios(t)
// If canonical mode is turned off, move bytes from inQueue's wait
// buffer to its read buffer. Anything already in the read buffer is
// now readable.
if oldCanonEnabled && !l.termios.LEnabled(linux.ICANON) {
l.inQueue.mu.Lock()
l.inQueue.pushWaitBufLocked(l)
l.inQueue.readable = true
l.inQueue.mu.Unlock()
l.slaveWaiter.Notify(waiter.EventIn)
}
return 0, err
}
func (l *lineDiscipline) windowSize(ctx context.Context, io usermem.IO, args arch.SyscallArguments) error {
l.sizeMu.Lock()
defer l.sizeMu.Unlock()
_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), l.size, usermem.IOOpts{
AddressSpaceActive: true,
})
return err
}
func (l *lineDiscipline) setWindowSize(ctx context.Context, io usermem.IO, args arch.SyscallArguments) error {
l.sizeMu.Lock()
defer l.sizeMu.Unlock()
_, err := usermem.CopyObjectIn(ctx, io, args[2].Pointer(), &l.size, usermem.IOOpts{
AddressSpaceActive: true,
})
return err
}
func (l *lineDiscipline) masterReadiness() waiter.EventMask {
// We don't have to lock a termios because the default master termios
// is immutable.
return l.inQueue.writeReadiness(&linux.MasterTermios) | l.outQueue.readReadiness(&linux.MasterTermios)
}
func (l *lineDiscipline) slaveReadiness() waiter.EventMask {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
return l.outQueue.writeReadiness(&l.termios) | l.inQueue.readReadiness(&l.termios)
}
func (l *lineDiscipline) inputQueueReadSize(ctx context.Context, io usermem.IO, args arch.SyscallArguments) error {
return l.inQueue.readableSize(ctx, io, args)
}
func (l *lineDiscipline) inputQueueRead(ctx context.Context, dst usermem.IOSequence) (int64, error) {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
n, pushed, err := l.inQueue.read(ctx, dst, l)
if err != nil {
return 0, err
}
if n > 0 {
l.masterWaiter.Notify(waiter.EventOut)
if pushed {
l.slaveWaiter.Notify(waiter.EventIn)
}
return n, nil
}
return 0, syserror.ErrWouldBlock
}
func (l *lineDiscipline) inputQueueWrite(ctx context.Context, src usermem.IOSequence) (int64, error) {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
n, err := l.inQueue.write(ctx, src, l)
if err != nil {
return 0, err
}
if n > 0 {
l.slaveWaiter.Notify(waiter.EventIn)
return n, nil
}
return 0, syserror.ErrWouldBlock
}
func (l *lineDiscipline) outputQueueReadSize(ctx context.Context, io usermem.IO, args arch.SyscallArguments) error {
return l.outQueue.readableSize(ctx, io, args)
}
func (l *lineDiscipline) outputQueueRead(ctx context.Context, dst usermem.IOSequence) (int64, error) {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
n, pushed, err := l.outQueue.read(ctx, dst, l)
if err != nil {
return 0, err
}
if n > 0 {
l.slaveWaiter.Notify(waiter.EventOut)
if pushed {
l.masterWaiter.Notify(waiter.EventIn)
}
return n, nil
}
return 0, syserror.ErrWouldBlock
}
func (l *lineDiscipline) outputQueueWrite(ctx context.Context, src usermem.IOSequence) (int64, error) {
l.termiosMu.RLock()
defer l.termiosMu.RUnlock()
n, err := l.outQueue.write(ctx, src, l)
if err != nil {
return 0, err
}
if n > 0 {
l.masterWaiter.Notify(waiter.EventIn)
return n, nil
}
return 0, syserror.ErrWouldBlock
}
// transformer is a helper interface to make it easier to stateify queue.
type transformer interface {
// transform functions require queue's mutex to be held.
transform(*lineDiscipline, *queue, []byte) int
}
// outputQueueTransformer implements transformer. It performs line discipline
// transformations on the output queue.
//
// +stateify savable
type outputQueueTransformer struct{}
// transform does output processing for one end of the pty. See
// drivers/tty/n_tty.c:do_output_char for an analogous kernel function.
//
// Preconditions:
// * l.termiosMu must be held for reading.
// * q.mu must be held.
func (*outputQueueTransformer) transform(l *lineDiscipline, q *queue, buf []byte) int {
// transformOutput is effectively always in noncanonical mode, as the
// master termios never has ICANON set.
if !l.termios.OEnabled(linux.OPOST) {
q.readBuf = append(q.readBuf, buf...)
if len(q.readBuf) > 0 {
q.readable = true
}
return len(buf)
}
var ret int
for len(buf) > 0 {
size := l.peek(buf)
cBytes := append([]byte{}, buf[:size]...)
ret += size
buf = buf[size:]
// We're guaranteed that cBytes has at least one element.
switch cBytes[0] {
case '\n':
if l.termios.OEnabled(linux.ONLRET) {
l.column = 0
}
if l.termios.OEnabled(linux.ONLCR) {
q.readBuf = append(q.readBuf, '\r', '\n')
continue
}
case '\r':
if l.termios.OEnabled(linux.ONOCR) && l.column == 0 {
continue
}
if l.termios.OEnabled(linux.OCRNL) {
cBytes[0] = '\n'
if l.termios.OEnabled(linux.ONLRET) {
l.column = 0
}
break
}
l.column = 0
case '\t':
spaces := spacesPerTab - l.column%spacesPerTab
if l.termios.OutputFlags&linux.TABDLY == linux.XTABS {
l.column += spaces
q.readBuf = append(q.readBuf, bytes.Repeat([]byte{' '}, spacesPerTab)...)
continue
}
l.column += spaces
case '\b':
if l.column > 0 {
l.column--
}
default:
l.column++
}
q.readBuf = append(q.readBuf, cBytes...)
}
if len(q.readBuf) > 0 {
q.readable = true
}
return ret
}
// inputQueueTransformer implements transformer. It performs line discipline
// transformations on the input queue.
//
// +stateify savable
type inputQueueTransformer struct{}
// transform does input processing for one end of the pty. Characters read are
// transformed according to flags set in the termios struct. See
// drivers/tty/n_tty.c:n_tty_receive_char_special for an analogous kernel
// function.
//
// Preconditions:
// * l.termiosMu must be held for reading.
// * q.mu must be held.
func (*inputQueueTransformer) transform(l *lineDiscipline, q *queue, buf []byte) int {
// If there's a line waiting to be read in canonical mode, don't write
// anything else to the read buffer.
if l.termios.LEnabled(linux.ICANON) && q.readable {
return 0
}
maxBytes := nonCanonMaxBytes
if l.termios.LEnabled(linux.ICANON) {
maxBytes = canonMaxBytes
}
var ret int
for len(buf) > 0 && len(q.readBuf) < canonMaxBytes {
size := l.peek(buf)
cBytes := append([]byte{}, buf[:size]...)
// We're guaranteed that cBytes has at least one element.
switch cBytes[0] {
case '\r':
if l.termios.IEnabled(linux.IGNCR) {
buf = buf[size:]
ret += size
continue
}
if l.termios.IEnabled(linux.ICRNL) {
cBytes[0] = '\n'
}
case '\n':
if l.termios.IEnabled(linux.INLCR) {
cBytes[0] = '\r'
}
}
// In canonical mode, we discard non-terminating characters
// after the first 4095.
if l.shouldDiscard(q, cBytes) {
buf = buf[size:]
ret += size
continue
}
// Stop if the buffer would be overfilled.
if len(q.readBuf)+size > maxBytes {
break
}
buf = buf[size:]
ret += size
// If we get EOF, make the buffer available for reading.
if l.termios.LEnabled(linux.ICANON) && l.termios.IsEOF(cBytes[0]) {
q.readable = true
break
}
q.readBuf = append(q.readBuf, cBytes...)
// Anything written to the readBuf will have to be echoed.
if l.termios.LEnabled(linux.ECHO) {
l.outQueue.writeBytes(cBytes, l)
l.masterWaiter.Notify(waiter.EventIn)
}
// If we finish a line, make it available for reading.
if l.termios.LEnabled(linux.ICANON) && l.termios.IsTerminating(cBytes) {
q.readable = true
break
}
}
// In noncanonical mode, everything is readable.
if !l.termios.LEnabled(linux.ICANON) && len(q.readBuf) > 0 {
q.readable = true
}
return ret
}
// shouldDiscard returns whether c should be discarded. In canonical mode, if
// too many bytes are enqueued, we keep reading input and discarding it until
// we find a terminating character. Signal/echo processing still occurs.
//
// Precondition:
// * l.termiosMu must be held for reading.
// * q.mu must be held.
func (l *lineDiscipline) shouldDiscard(q *queue, cBytes []byte) bool {
return l.termios.LEnabled(linux.ICANON) && len(q.readBuf)+len(cBytes) >= canonMaxBytes && !l.termios.IsTerminating(cBytes)
}
// peek returns the size in bytes of the next character to process. As long as
// b isn't empty, peek returns a value of at least 1.
func (l *lineDiscipline) peek(b []byte) int {
size := 1
// If UTF-8 support is enabled, runes might be multiple bytes.
if l.termios.IEnabled(linux.IUTF8) {
_, size = utf8.DecodeRune(b)
}
return size
}