gvisor/pkg/sentry/loader/loader.go

405 lines
13 KiB
Go

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package loader loads an executable file into a MemoryManager.
package loader
import (
"bytes"
"fmt"
"io"
"path"
"strings"
"gvisor.dev/gvisor/pkg/abi"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/cpuid"
"gvisor.dev/gvisor/pkg/rand"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sentry/context"
"gvisor.dev/gvisor/pkg/sentry/fs"
"gvisor.dev/gvisor/pkg/sentry/kernel/auth"
"gvisor.dev/gvisor/pkg/sentry/mm"
"gvisor.dev/gvisor/pkg/sentry/usermem"
"gvisor.dev/gvisor/pkg/syserr"
"gvisor.dev/gvisor/pkg/syserror"
)
// LoadArgs holds specifications for an executable file to be loaded.
type LoadArgs struct {
// MemoryManager is the memory manager to load the executable into.
MemoryManager *mm.MemoryManager
// Mounts is the mount namespace in which to look up Filename.
Mounts *fs.MountNamespace
// Root is the root directory under which to look up Filename.
Root *fs.Dirent
// WorkingDirectory is the working directory under which to look up
// Filename.
WorkingDirectory *fs.Dirent
// RemainingTraversals is the maximum number of symlinks to follow to
// resolve Filename. This counter is passed by reference to keep it
// updated throughout the call stack.
RemainingTraversals *uint
// ResolveFinal indicates whether the final link of Filename should be
// resolved, if it is a symlink.
ResolveFinal bool
// Filename is the path for the executable.
Filename string
// File is an open fs.File object of the executable. If File is not
// nil, then File will be loaded and Filename will be ignored.
File *fs.File
// CloseOnExec indicates that the executable (or one of its parent
// directories) was opened with O_CLOEXEC. If the executable is an
// interpreter script, then cause an ENOENT error to occur, since the
// script would otherwise be inaccessible to the interpreter.
CloseOnExec bool
// Argv is the vector of arguments to pass to the executable.
Argv []string
// Envv is the vector of environment variables to pass to the
// executable.
Envv []string
// Features specifies the CPU feature set for the executable.
Features *cpuid.FeatureSet
}
// readFull behaves like io.ReadFull for an *fs.File.
func readFull(ctx context.Context, f *fs.File, dst usermem.IOSequence, offset int64) (int64, error) {
var total int64
for dst.NumBytes() > 0 {
n, err := f.Preadv(ctx, dst, offset+total)
total += n
if err == io.EOF && total != 0 {
return total, io.ErrUnexpectedEOF
} else if err != nil {
return total, err
}
dst = dst.DropFirst64(n)
}
return total, nil
}
// openPath opens args.Filename and checks that it is valid for loading.
//
// openPath returns an *fs.Dirent and *fs.File for args.Filename, which is not
// installed in the Task FDTable. The caller takes ownership of both.
//
// args.Filename must be a readable, executable, regular file.
func openPath(ctx context.Context, args LoadArgs) (*fs.Dirent, *fs.File, error) {
if args.Filename == "" {
ctx.Infof("cannot open empty name")
return nil, nil, syserror.ENOENT
}
var d *fs.Dirent
var err error
if args.ResolveFinal {
d, err = args.Mounts.FindInode(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals)
} else {
d, err = args.Mounts.FindLink(ctx, args.Root, args.WorkingDirectory, args.Filename, args.RemainingTraversals)
}
if err != nil {
return nil, nil, err
}
// Defer a DecRef for the sake of failure cases.
defer d.DecRef()
if !args.ResolveFinal && fs.IsSymlink(d.Inode.StableAttr) {
return nil, nil, syserror.ELOOP
}
if err := checkPermission(ctx, d); err != nil {
return nil, nil, err
}
// If they claim it's a directory, then make sure.
//
// N.B. we reject directories below, but we must first reject
// non-directories passed as directories.
if strings.HasSuffix(args.Filename, "/") && !fs.IsDir(d.Inode.StableAttr) {
return nil, nil, syserror.ENOTDIR
}
if err := checkIsRegularFile(ctx, d, args.Filename); err != nil {
return nil, nil, err
}
f, err := d.Inode.GetFile(ctx, d, fs.FileFlags{Read: true})
if err != nil {
return nil, nil, err
}
// Defer a DecRef for the sake of failure cases.
defer f.DecRef()
if err := checkPread(ctx, f, args.Filename); err != nil {
return nil, nil, err
}
d.IncRef()
f.IncRef()
return d, f, err
}
// checkFile performs checks on a file to be executed.
func checkFile(ctx context.Context, f *fs.File, filename string) error {
if err := checkPermission(ctx, f.Dirent); err != nil {
return err
}
if err := checkIsRegularFile(ctx, f.Dirent, filename); err != nil {
return err
}
return checkPread(ctx, f, filename)
}
// checkPermission checks whether the file is readable and executable.
func checkPermission(ctx context.Context, d *fs.Dirent) error {
perms := fs.PermMask{
// TODO(gvisor.dev/issue/160): Linux requires only execute
// permission, not read. However, our backing filesystems may
// prevent us from reading the file without read permission.
//
// Additionally, a task with a non-readable executable has
// additional constraints on access via ptrace and procfs.
Read: true,
Execute: true,
}
return d.Inode.CheckPermission(ctx, perms)
}
// checkIsRegularFile prevents us from trying to execute a directory, pipe, etc.
func checkIsRegularFile(ctx context.Context, d *fs.Dirent, filename string) error {
attr := d.Inode.StableAttr
if !fs.IsRegular(attr) {
ctx.Infof("%s is not regular: %v", filename, attr)
return syserror.EACCES
}
return nil
}
// checkPread checks whether we can read the file at arbitrary offsets.
func checkPread(ctx context.Context, f *fs.File, filename string) error {
if !f.Flags().Pread {
ctx.Infof("%s cannot be read at an offset: %+v", filename, f.Flags())
return syserror.EACCES
}
return nil
}
// allocStack allocates and maps a stack in to any available part of the address space.
func allocStack(ctx context.Context, m *mm.MemoryManager, a arch.Context) (*arch.Stack, error) {
ar, err := m.MapStack(ctx)
if err != nil {
return nil, err
}
return &arch.Stack{a, m, ar.End}, nil
}
const (
// maxLoaderAttempts is the maximum number of attempts to try to load
// an interpreter scripts, to prevent loops. 6 (initial + 5 changes) is
// what the Linux kernel allows (fs/exec.c:search_binary_handler).
maxLoaderAttempts = 6
)
// loadExecutable loads an executable that is pointed to by args.File. If nil,
// the path args.Filename is resolved and loaded. If the executable is an
// interpreter script rather than an ELF, the binary of the corresponding
// interpreter will be loaded.
//
// It returns:
// * loadedELF, description of the loaded binary
// * arch.Context matching the binary arch
// * fs.Dirent of the binary file
// * Possibly updated args.Argv
func loadExecutable(ctx context.Context, args LoadArgs) (loadedELF, arch.Context, *fs.Dirent, []string, error) {
for i := 0; i < maxLoaderAttempts; i++ {
var (
d *fs.Dirent
err error
)
if args.File == nil {
d, args.File, err = openPath(ctx, args)
// We will return d in the successful case, but defer a DecRef for the
// sake of intermediate loops and failure cases.
if d != nil {
defer d.DecRef()
}
if args.File != nil {
defer args.File.DecRef()
}
} else {
d = args.File.Dirent
d.IncRef()
defer d.DecRef()
err = checkFile(ctx, args.File, args.Filename)
}
if err != nil {
ctx.Infof("Error opening %s: %v", args.Filename, err)
return loadedELF{}, nil, nil, nil, err
}
// Check the header. Is this an ELF or interpreter script?
var hdr [4]uint8
// N.B. We assume that reading from a regular file cannot block.
_, err = readFull(ctx, args.File, usermem.BytesIOSequence(hdr[:]), 0)
// Allow unexpected EOF, as a valid executable could be only three bytes
// (e.g., #!a).
if err != nil && err != io.ErrUnexpectedEOF {
if err == io.EOF {
err = syserror.ENOEXEC
}
return loadedELF{}, nil, nil, nil, err
}
switch {
case bytes.Equal(hdr[:], []byte(elfMagic)):
loaded, ac, err := loadELF(ctx, args)
if err != nil {
ctx.Infof("Error loading ELF: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// An ELF is always terminal. Hold on to d.
d.IncRef()
return loaded, ac, d, args.Argv, err
case bytes.Equal(hdr[:2], []byte(interpreterScriptMagic)):
if args.CloseOnExec {
return loadedELF{}, nil, nil, nil, syserror.ENOENT
}
args.Filename, args.Argv, err = parseInterpreterScript(ctx, args.Filename, args.File, args.Argv)
if err != nil {
ctx.Infof("Error loading interpreter script: %v", err)
return loadedELF{}, nil, nil, nil, err
}
// Refresh the traversal limit for the interpreter.
*args.RemainingTraversals = linux.MaxSymlinkTraversals
default:
ctx.Infof("Unknown magic: %v", hdr)
return loadedELF{}, nil, nil, nil, syserror.ENOEXEC
}
// Set to nil in case we loop on a Interpreter Script.
args.File = nil
}
return loadedELF{}, nil, nil, nil, syserror.ELOOP
}
// Load loads args.File into a MemoryManager. If args.File is nil, the path
// args.Filename is resolved and loaded instead.
//
// If Load returns ErrSwitchFile it should be called again with the returned
// path and argv.
//
// Preconditions:
// * The Task MemoryManager is empty.
// * Load is called on the Task goroutine.
func Load(ctx context.Context, args LoadArgs, extraAuxv []arch.AuxEntry, vdso *VDSO) (abi.OS, arch.Context, string, *syserr.Error) {
// Load the executable itself.
loaded, ac, d, newArgv, err := loadExecutable(ctx, args)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load %s: %v", args.Filename, err), syserr.FromError(err).ToLinux())
}
defer d.DecRef()
// Load the VDSO.
vdsoAddr, err := loadVDSO(ctx, args.MemoryManager, vdso, loaded)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Error loading VDSO: %v", err), syserr.FromError(err).ToLinux())
}
// Setup the heap. brk starts at the next page after the end of the
// executable. Userspace can assume that the remainer of the page after
// loaded.end is available for its use.
e, ok := loaded.end.RoundUp()
if !ok {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("brk overflows: %#x", loaded.end), linux.ENOEXEC)
}
args.MemoryManager.BrkSetup(ctx, e)
// Allocate our stack.
stack, err := allocStack(ctx, args.MemoryManager, ac)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to allocate stack: %v", err), syserr.FromError(err).ToLinux())
}
// Push the original filename to the stack, for AT_EXECFN.
execfn, err := stack.Push(args.Filename)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push exec filename: %v", err), syserr.FromError(err).ToLinux())
}
// Push 16 random bytes on the stack which AT_RANDOM will point to.
var b [16]byte
if _, err := rand.Read(b[:]); err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to read random bytes: %v", err), syserr.FromError(err).ToLinux())
}
random, err := stack.Push(b)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to push random bytes: %v", err), syserr.FromError(err).ToLinux())
}
c := auth.CredentialsFromContext(ctx)
// Add generic auxv entries.
auxv := append(loaded.auxv, arch.Auxv{
arch.AuxEntry{linux.AT_UID, usermem.Addr(c.RealKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EUID, usermem.Addr(c.EffectiveKUID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_GID, usermem.Addr(c.RealKGID.In(c.UserNamespace).OrOverflow())},
arch.AuxEntry{linux.AT_EGID, usermem.Addr(c.EffectiveKGID.In(c.UserNamespace).OrOverflow())},
// The conditions that require AT_SECURE = 1 never arise. See
// kernel.Task.updateCredsForExecLocked.
arch.AuxEntry{linux.AT_SECURE, 0},
arch.AuxEntry{linux.AT_CLKTCK, linux.CLOCKS_PER_SEC},
arch.AuxEntry{linux.AT_EXECFN, execfn},
arch.AuxEntry{linux.AT_RANDOM, random},
arch.AuxEntry{linux.AT_PAGESZ, usermem.PageSize},
arch.AuxEntry{linux.AT_SYSINFO_EHDR, vdsoAddr},
}...)
auxv = append(auxv, extraAuxv...)
sl, err := stack.Load(newArgv, args.Envv, auxv)
if err != nil {
return 0, nil, "", syserr.NewDynamic(fmt.Sprintf("Failed to load stack: %v", err), syserr.FromError(err).ToLinux())
}
m := args.MemoryManager
m.SetArgvStart(sl.ArgvStart)
m.SetArgvEnd(sl.ArgvEnd)
m.SetEnvvStart(sl.EnvvStart)
m.SetEnvvEnd(sl.EnvvEnd)
m.SetAuxv(auxv)
m.SetExecutable(d)
ac.SetIP(uintptr(loaded.entry))
ac.SetStack(uintptr(stack.Bottom))
name := path.Base(args.Filename)
if len(name) > linux.TASK_COMM_LEN-1 {
name = name[:linux.TASK_COMM_LEN-1]
}
return loaded.os, ac, name, nil
}