gvisor/pkg/sentry/kernel/pipe/pipe_util.go

214 lines
5.6 KiB
Go

// Copyright 2019 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package pipe
import (
"io"
"math"
"syscall"
"gvisor.dev/gvisor/pkg/abi/linux"
"gvisor.dev/gvisor/pkg/amutex"
"gvisor.dev/gvisor/pkg/context"
"gvisor.dev/gvisor/pkg/sentry/arch"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/usermem"
"gvisor.dev/gvisor/pkg/waiter"
)
// This file contains Pipe file functionality that is tied to neither VFS nor
// the old fs architecture.
// Release cleans up the pipe's state.
func (p *Pipe) Release() {
p.rClose()
p.wClose()
// Wake up readers and writers.
p.Notify(waiter.EventIn | waiter.EventOut)
}
// Read reads from the Pipe into dst.
func (p *Pipe) Read(ctx context.Context, dst usermem.IOSequence) (int64, error) {
n, err := p.read(ctx, readOps{
left: func() int64 {
return dst.NumBytes()
},
limit: func(l int64) {
dst = dst.TakeFirst64(l)
},
read: func(buf *buffer) (int64, error) {
n, err := dst.CopyOutFrom(ctx, buf)
dst = dst.DropFirst64(n)
return n, err
},
})
if n > 0 {
p.Notify(waiter.EventOut)
}
return n, err
}
// WriteTo writes to w from the Pipe.
func (p *Pipe) WriteTo(ctx context.Context, w io.Writer, count int64, dup bool) (int64, error) {
ops := readOps{
left: func() int64 {
return count
},
limit: func(l int64) {
count = l
},
read: func(buf *buffer) (int64, error) {
n, err := buf.ReadToWriter(w, count, dup)
count -= n
return n, err
},
}
if dup {
// There is no notification for dup operations.
return p.dup(ctx, ops)
}
n, err := p.read(ctx, ops)
if n > 0 {
p.Notify(waiter.EventOut)
}
return n, err
}
// Write writes to the Pipe from src.
func (p *Pipe) Write(ctx context.Context, src usermem.IOSequence) (int64, error) {
n, err := p.write(ctx, writeOps{
left: func() int64 {
return src.NumBytes()
},
limit: func(l int64) {
src = src.TakeFirst64(l)
},
write: func(buf *buffer) (int64, error) {
n, err := src.CopyInTo(ctx, buf)
src = src.DropFirst64(n)
return n, err
},
})
if n > 0 {
p.Notify(waiter.EventIn)
}
return n, err
}
// ReadFrom reads from r to the Pipe.
func (p *Pipe) ReadFrom(ctx context.Context, r io.Reader, count int64) (int64, error) {
n, err := p.write(ctx, writeOps{
left: func() int64 {
return count
},
limit: func(l int64) {
count = l
},
write: func(buf *buffer) (int64, error) {
n, err := buf.WriteFromReader(r, count)
count -= n
return n, err
},
})
if n > 0 {
p.Notify(waiter.EventIn)
}
return n, err
}
// Readiness returns the ready events in the underlying pipe.
func (p *Pipe) Readiness(mask waiter.EventMask) waiter.EventMask {
return p.rwReadiness() & mask
}
// Ioctl implements ioctls on the Pipe.
func (p *Pipe) Ioctl(ctx context.Context, io usermem.IO, args arch.SyscallArguments) (uintptr, error) {
// Switch on ioctl request.
switch int(args[1].Int()) {
case linux.FIONREAD:
v := p.queued()
if v > math.MaxInt32 {
v = math.MaxInt32 // Silently truncate.
}
// Copy result to user-space.
_, err := usermem.CopyObjectOut(ctx, io, args[2].Pointer(), int32(v), usermem.IOOpts{
AddressSpaceActive: true,
})
return 0, err
default:
return 0, syscall.ENOTTY
}
}
// waitFor blocks until the underlying pipe has at least one reader/writer is
// announced via 'wakeupChan', or until 'sleeper' is cancelled. Any call to this
// function will block for either readers or writers, depending on where
// 'wakeupChan' points.
//
// mu must be held by the caller. waitFor returns with mu held, but it will
// drop mu before blocking for any reader/writers.
func waitFor(mu *sync.Mutex, wakeupChan *chan struct{}, sleeper amutex.Sleeper) bool {
// Ideally this function would simply use a condition variable. However, the
// wait needs to be interruptible via 'sleeper', so we must sychronize via a
// channel. The synchronization below relies on the fact that closing a
// channel unblocks all receives on the channel.
// Does an appropriate wakeup channel already exist? If not, create a new
// one. This is all done under f.mu to avoid races.
if *wakeupChan == nil {
*wakeupChan = make(chan struct{})
}
// Grab a local reference to the wakeup channel since it may disappear as
// soon as we drop f.mu.
wakeup := *wakeupChan
// Drop the lock and prepare to sleep.
mu.Unlock()
cancel := sleeper.SleepStart()
// Wait for either a new reader/write to be signalled via 'wakeup', or
// for the sleep to be cancelled.
select {
case <-wakeup:
sleeper.SleepFinish(true)
case <-cancel:
sleeper.SleepFinish(false)
}
// Take the lock and check if we were woken. If we were woken and
// interrupted, the former takes priority.
mu.Lock()
select {
case <-wakeup:
return true
default:
return false
}
}
// newHandleLocked signals a new pipe reader or writer depending on where
// 'wakeupChan' points. This unblocks any corresponding reader or writer
// waiting for the other end of the channel to be opened, see Fifo.waitFor.
//
// Precondition: the mutex protecting wakeupChan must be held.
func newHandleLocked(wakeupChan *chan struct{}) {
if *wakeupChan != nil {
close(*wakeupChan)
*wakeupChan = nil
}
}