gvisor/test/syscalls/linux/ioctl.cc

407 lines
12 KiB
C++

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <arpa/inet.h>
#include <errno.h>
#include <fcntl.h>
#include <net/if.h>
#include <netdb.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "test/syscalls/linux/ip_socket_test_util.h"
#include "test/syscalls/linux/socket_test_util.h"
#include "test/syscalls/linux/unix_domain_socket_test_util.h"
#include "test/util/file_descriptor.h"
#include "test/util/signal_util.h"
#include "test/util/test_util.h"
namespace gvisor {
namespace testing {
namespace {
bool CheckNonBlocking(int fd) {
int ret = fcntl(fd, F_GETFL, 0);
TEST_CHECK(ret != -1);
return (ret & O_NONBLOCK) == O_NONBLOCK;
}
bool CheckCloExec(int fd) {
int ret = fcntl(fd, F_GETFD, 0);
TEST_CHECK(ret != -1);
return (ret & FD_CLOEXEC) == FD_CLOEXEC;
}
class IoctlTest : public ::testing::Test {
protected:
void SetUp() override {
ASSERT_THAT(fd_ = open("/dev/null", O_RDONLY), SyscallSucceeds());
}
void TearDown() override {
if (fd_ >= 0) {
ASSERT_THAT(close(fd_), SyscallSucceeds());
fd_ = -1;
}
}
int fd() const { return fd_; }
private:
int fd_ = -1;
};
TEST_F(IoctlTest, BadFileDescriptor) {
EXPECT_THAT(ioctl(-1 /* fd */, 0), SyscallFailsWithErrno(EBADF));
}
TEST_F(IoctlTest, InvalidControlNumber) {
EXPECT_THAT(ioctl(STDOUT_FILENO, 0), SyscallFailsWithErrno(ENOTTY));
}
TEST_F(IoctlTest, FIONBIOSucceeds) {
EXPECT_FALSE(CheckNonBlocking(fd()));
int set = 1;
EXPECT_THAT(ioctl(fd(), FIONBIO, &set), SyscallSucceeds());
EXPECT_TRUE(CheckNonBlocking(fd()));
set = 0;
EXPECT_THAT(ioctl(fd(), FIONBIO, &set), SyscallSucceeds());
EXPECT_FALSE(CheckNonBlocking(fd()));
}
TEST_F(IoctlTest, FIONBIOFails) {
EXPECT_THAT(ioctl(fd(), FIONBIO, nullptr), SyscallFailsWithErrno(EFAULT));
}
TEST_F(IoctlTest, FIONCLEXSucceeds) {
EXPECT_THAT(ioctl(fd(), FIONCLEX), SyscallSucceeds());
EXPECT_FALSE(CheckCloExec(fd()));
}
TEST_F(IoctlTest, FIOCLEXSucceeds) {
EXPECT_THAT(ioctl(fd(), FIOCLEX), SyscallSucceeds());
EXPECT_TRUE(CheckCloExec(fd()));
}
TEST_F(IoctlTest, FIOASYNCFails) {
EXPECT_THAT(ioctl(fd(), FIOASYNC, nullptr), SyscallFailsWithErrno(EFAULT));
}
TEST_F(IoctlTest, FIOASYNCSucceeds) {
// Not all FDs support FIOASYNC.
const FileDescriptor s = ASSERT_NO_ERRNO_AND_VALUE(
Socket(AF_UNIX, SOCK_SEQPACKET | SOCK_NONBLOCK | SOCK_CLOEXEC, 0));
int before = -1;
ASSERT_THAT(before = fcntl(s.get(), F_GETFL), SyscallSucceeds());
int set = 1;
EXPECT_THAT(ioctl(s.get(), FIOASYNC, &set), SyscallSucceeds());
int after_set = -1;
ASSERT_THAT(after_set = fcntl(s.get(), F_GETFL), SyscallSucceeds());
EXPECT_EQ(after_set, before | O_ASYNC) << "before was " << before;
set = 0;
EXPECT_THAT(ioctl(s.get(), FIOASYNC, &set), SyscallSucceeds());
ASSERT_THAT(fcntl(s.get(), F_GETFL), SyscallSucceedsWithValue(before));
}
/* Count of the number of SIGIOs handled. */
static volatile int io_received = 0;
void inc_io_handler(int sig, siginfo_t* siginfo, void* arg) { io_received++; }
TEST_F(IoctlTest, FIOASYNCNoTarget) {
auto pair =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_SEQPACKET).Create());
// Count SIGIOs received.
io_received = 0;
struct sigaction sa;
sa.sa_sigaction = inc_io_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
// Actually allow SIGIO delivery.
auto mask_cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSignalMask(SIG_UNBLOCK, SIGIO));
int set = 1;
EXPECT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
constexpr char kData[] = "abc";
ASSERT_THAT(WriteFd(pair->first_fd(), kData, sizeof(kData)),
SyscallSucceedsWithValue(sizeof(kData)));
EXPECT_EQ(io_received, 0);
}
TEST_F(IoctlTest, FIOASYNCSelfTarget) {
// FIXME(b/120624367): gVisor erroneously sends SIGIO on close(2), which would
// kill the test when pair goes out of scope. Temporarily ignore SIGIO so that
// that the close signal is ignored.
struct sigaction sa;
sa.sa_handler = SIG_IGN;
auto early_sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
auto pair =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_SEQPACKET).Create());
// Count SIGIOs received.
io_received = 0;
sa.sa_sigaction = inc_io_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
// Actually allow SIGIO delivery.
auto mask_cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSignalMask(SIG_UNBLOCK, SIGIO));
int set = 1;
EXPECT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
pid_t pid = getpid();
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid), SyscallSucceeds());
constexpr char kData[] = "abc";
ASSERT_THAT(WriteFd(pair->first_fd(), kData, sizeof(kData)),
SyscallSucceedsWithValue(sizeof(kData)));
EXPECT_EQ(io_received, 1);
}
// Equivalent to FIOASYNCSelfTarget except that FIOSETOWN is called before
// FIOASYNC.
TEST_F(IoctlTest, FIOASYNCSelfTarget2) {
// FIXME(b/120624367): gVisor erroneously sends SIGIO on close(2), which would
// kill the test when pair goes out of scope. Temporarily ignore SIGIO so that
// that the close signal is ignored.
struct sigaction sa;
sa.sa_handler = SIG_IGN;
auto early_sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
auto pair =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_SEQPACKET).Create());
// Count SIGIOs received.
io_received = 0;
sa.sa_sigaction = inc_io_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
// Actually allow SIGIO delivery.
auto mask_cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSignalMask(SIG_UNBLOCK, SIGIO));
pid_t pid = -1;
EXPECT_THAT(pid = getpid(), SyscallSucceeds());
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid), SyscallSucceeds());
int set = 1;
EXPECT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
constexpr char kData[] = "abc";
ASSERT_THAT(WriteFd(pair->first_fd(), kData, sizeof(kData)),
SyscallSucceedsWithValue(sizeof(kData)));
EXPECT_EQ(io_received, 1);
}
// Check that closing an FD does not result in an event.
TEST_F(IoctlTest, FIOASYNCSelfTargetClose) {
// Count SIGIOs received.
struct sigaction sa;
io_received = 0;
sa.sa_sigaction = inc_io_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
// Actually allow SIGIO delivery.
auto mask_cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSignalMask(SIG_UNBLOCK, SIGIO));
for (int i = 0; i < 2; i++) {
auto pair = ASSERT_NO_ERRNO_AND_VALUE(
UnixDomainSocketPair(SOCK_SEQPACKET).Create());
pid_t pid = getpid();
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid), SyscallSucceeds());
int set = 1;
EXPECT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
}
// FIXME(b/120624367): gVisor erroneously sends SIGIO on close.
SKIP_IF(IsRunningOnGvisor());
EXPECT_EQ(io_received, 0);
}
TEST_F(IoctlTest, FIOASYNCInvalidPID) {
auto pair =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_SEQPACKET).Create());
int set = 1;
ASSERT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
pid_t pid = INT_MAX;
// This succeeds (with behavior equivalent to a pid of 0) in Linux prior to
// f73127356f34 "fs/fcntl: return -ESRCH in f_setown when pid/pgid can't be
// found", and fails with EPERM after that commit.
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid),
AnyOf(SyscallSucceeds(), SyscallFailsWithErrno(ESRCH)));
}
TEST_F(IoctlTest, FIOASYNCUnsetTarget) {
auto pair =
ASSERT_NO_ERRNO_AND_VALUE(UnixDomainSocketPair(SOCK_SEQPACKET).Create());
// Count SIGIOs received.
io_received = 0;
struct sigaction sa;
sa.sa_sigaction = inc_io_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
auto sa_cleanup = ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGIO, sa));
// Actually allow SIGIO delivery.
auto mask_cleanup =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSignalMask(SIG_UNBLOCK, SIGIO));
int set = 1;
EXPECT_THAT(ioctl(pair->second_fd(), FIOASYNC, &set), SyscallSucceeds());
pid_t pid = getpid();
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid), SyscallSucceeds());
// Passing a PID of 0 unsets the target.
pid = 0;
EXPECT_THAT(ioctl(pair->second_fd(), FIOSETOWN, &pid), SyscallSucceeds());
constexpr char kData[] = "abc";
ASSERT_THAT(WriteFd(pair->first_fd(), kData, sizeof(kData)),
SyscallSucceedsWithValue(sizeof(kData)));
EXPECT_EQ(io_received, 0);
}
using IoctlTestSIOCGIFCONF = SimpleSocketTest;
TEST_P(IoctlTestSIOCGIFCONF, ValidateNoArrayGetsLength) {
auto fd = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
// Validate that no array can be used to get the length required.
struct ifconf ifconf = {};
ASSERT_THAT(ioctl(fd->get(), SIOCGIFCONF, &ifconf), SyscallSucceeds());
ASSERT_GT(ifconf.ifc_len, 0);
}
// This test validates that we will only return a partial array list and not
// partial ifrreq structs.
TEST_P(IoctlTestSIOCGIFCONF, ValidateNoPartialIfrsReturned) {
auto fd = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
struct ifreq ifr = {};
struct ifconf ifconf = {};
ifconf.ifc_len = sizeof(ifr) - 1; // One byte too few.
ifconf.ifc_ifcu.ifcu_req = &ifr;
ASSERT_THAT(ioctl(fd->get(), SIOCGIFCONF, &ifconf), SyscallSucceeds());
ASSERT_EQ(ifconf.ifc_len, 0);
ASSERT_EQ(ifr.ifr_name[0], '\0'); // Nothing is returned.
ifconf.ifc_len = sizeof(ifreq);
ASSERT_THAT(ioctl(fd->get(), SIOCGIFCONF, &ifconf), SyscallSucceeds());
ASSERT_GT(ifconf.ifc_len, 0);
ASSERT_NE(ifr.ifr_name[0], '\0'); // An interface can now be returned.
}
TEST_P(IoctlTestSIOCGIFCONF, ValidateLoopbackIsPresent) {
auto fd = ASSERT_NO_ERRNO_AND_VALUE(NewSocket());
struct ifconf ifconf = {};
struct ifreq ifr[10] = {}; // Storage for up to 10 interfaces.
ifconf.ifc_req = ifr;
ifconf.ifc_len = sizeof(ifr);
ASSERT_THAT(ioctl(fd->get(), SIOCGIFCONF, &ifconf), SyscallSucceeds());
size_t num_if = ifconf.ifc_len / sizeof(struct ifreq);
// We should have at least one interface.
ASSERT_GE(num_if, 1);
// One of the interfaces should be a loopback.
bool found_loopback = false;
for (size_t i = 0; i < num_if; ++i) {
if (strcmp(ifr[i].ifr_name, "lo") == 0) {
// SIOCGIFCONF returns the ipv4 address of the interface, let's check it.
ASSERT_EQ(ifr[i].ifr_addr.sa_family, AF_INET);
// Validate the address is correct for loopback.
sockaddr_in* sin = reinterpret_cast<sockaddr_in*>(&ifr[i].ifr_addr);
ASSERT_EQ(htonl(sin->sin_addr.s_addr), INADDR_LOOPBACK);
found_loopback = true;
break;
}
}
ASSERT_TRUE(found_loopback);
}
std::vector<SocketKind> IoctlSocketTypes() {
return {SimpleSocket(AF_UNIX, SOCK_STREAM, 0),
SimpleSocket(AF_UNIX, SOCK_DGRAM, 0),
SimpleSocket(AF_INET, SOCK_STREAM, 0),
SimpleSocket(AF_INET6, SOCK_STREAM, 0),
SimpleSocket(AF_INET, SOCK_DGRAM, 0),
SimpleSocket(AF_INET6, SOCK_DGRAM, 0)};
}
INSTANTIATE_TEST_SUITE_P(IoctlTest, IoctlTestSIOCGIFCONF,
::testing::ValuesIn(IoctlSocketTypes()));
} // namespace
TEST_F(IoctlTest, FIOGETOWNSucceeds) {
const FileDescriptor s = ASSERT_NO_ERRNO_AND_VALUE(
Socket(AF_UNIX, SOCK_SEQPACKET | SOCK_NONBLOCK | SOCK_CLOEXEC, 0));
int get = -1;
ASSERT_THAT(ioctl(s.get(), FIOGETOWN, &get), SyscallSucceeds());
EXPECT_EQ(get, 0);
}
TEST_F(IoctlTest, SIOCGPGRPSucceeds) {
const FileDescriptor s = ASSERT_NO_ERRNO_AND_VALUE(
Socket(AF_UNIX, SOCK_SEQPACKET | SOCK_NONBLOCK | SOCK_CLOEXEC, 0));
int get = -1;
ASSERT_THAT(ioctl(s.get(), SIOCGPGRP, &get), SyscallSucceeds());
EXPECT_EQ(get, 0);
}
} // namespace testing
} // namespace gvisor