gvisor/test/syscalls/linux/ip_socket_test_util.cc

242 lines
8.4 KiB
C++

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "test/syscalls/linux/ip_socket_test_util.h"
#include <net/if.h>
#include <netinet/in.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <cstring>
namespace gvisor {
namespace testing {
uint32_t IPFromInetSockaddr(const struct sockaddr* addr) {
auto* in_addr = reinterpret_cast<const struct sockaddr_in*>(addr);
return in_addr->sin_addr.s_addr;
}
uint16_t PortFromInetSockaddr(const struct sockaddr* addr) {
auto* in_addr = reinterpret_cast<const struct sockaddr_in*>(addr);
return ntohs(in_addr->sin_port);
}
PosixErrorOr<int> InterfaceIndex(std::string name) {
// TODO(igudger): Consider using netlink.
ifreq req = {};
memcpy(req.ifr_name, name.c_str(), name.size());
ASSIGN_OR_RETURN_ERRNO(auto sock, Socket(AF_INET, SOCK_DGRAM, 0));
RETURN_ERROR_IF_SYSCALL_FAIL(ioctl(sock.get(), SIOCGIFINDEX, &req));
return req.ifr_ifindex;
}
namespace {
std::string DescribeSocketType(int type) {
return absl::StrCat(((type & SOCK_NONBLOCK) != 0) ? "non-blocking " : "",
((type & SOCK_CLOEXEC) != 0) ? "close-on-exec " : "");
}
} // namespace
SocketPairKind IPv6TCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv6 TCP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind IPv4TCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv4 TCP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind DualStackTCPAcceptBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected dual stack TCP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindSocketPairCreator(AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ true)};
}
SocketPairKind IPv6TCPAcceptBindPersistentListenerSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv6 TCP socket");
return SocketPairKind{description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindPersistentListenerSocketPairCreator(
AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind IPv4TCPAcceptBindPersistentListenerSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv4 TCP socket");
return SocketPairKind{description, AF_INET, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindPersistentListenerSocketPairCreator(
AF_INET, type | SOCK_STREAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind DualStackTCPAcceptBindPersistentListenerSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected dual stack TCP socket");
return SocketPairKind{description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
TCPAcceptBindPersistentListenerSocketPairCreator(
AF_INET6, type | SOCK_STREAM, 0,
/* dual_stack = */ true)};
}
SocketPairKind IPv6UDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv6 UDP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET6, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind IPv4UDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected IPv4 UDP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketPairKind DualStackUDPBidirectionalBindSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "connected dual stack UDP socket");
return SocketPairKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UDPBidirectionalBindSocketPairCreator(AF_INET6, type | SOCK_DGRAM, 0,
/* dual_stack = */ true)};
}
SocketPairKind IPv4UDPUnboundSocketPair(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 UDP socket");
return SocketPairKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UDPUnboundSocketPairCreator(AF_INET, type | SOCK_DGRAM, 0,
/* dual_stack = */ false)};
}
SocketKind IPv4UDPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 UDP socket");
return SocketKind{
description, AF_INET, type | SOCK_DGRAM, IPPROTO_UDP,
UnboundSocketCreator(AF_INET, type | SOCK_DGRAM, IPPROTO_UDP)};
}
SocketKind IPv6UDPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv6 UDP socket");
return SocketKind{
description, AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP,
UnboundSocketCreator(AF_INET6, type | SOCK_DGRAM, IPPROTO_UDP)};
}
SocketKind IPv4TCPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv4 TCP socket");
return SocketKind{
description, AF_INET, type | SOCK_STREAM, IPPROTO_TCP,
UnboundSocketCreator(AF_INET, type | SOCK_STREAM, IPPROTO_TCP)};
}
SocketKind IPv6TCPUnboundSocket(int type) {
std::string description =
absl::StrCat(DescribeSocketType(type), "IPv6 TCP socket");
return SocketKind{
description, AF_INET6, type | SOCK_STREAM, IPPROTO_TCP,
UnboundSocketCreator(AF_INET6, type | SOCK_STREAM, IPPROTO_TCP)};
}
PosixError IfAddrHelper::Load() {
Release();
RETURN_ERROR_IF_SYSCALL_FAIL(getifaddrs(&ifaddr_));
return PosixError(0);
}
void IfAddrHelper::Release() {
if (ifaddr_) {
freeifaddrs(ifaddr_);
}
ifaddr_ = nullptr;
}
std::vector<std::string> IfAddrHelper::InterfaceList(int family) {
std::vector<std::string> names;
for (auto ifa = ifaddr_; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != family) {
continue;
}
names.emplace(names.end(), ifa->ifa_name);
}
return names;
}
sockaddr* IfAddrHelper::GetAddr(int family, std::string name) {
for (auto ifa = ifaddr_; ifa != NULL; ifa = ifa->ifa_next) {
if (ifa->ifa_addr == NULL || ifa->ifa_addr->sa_family != family) {
continue;
}
if (name == ifa->ifa_name) {
return ifa->ifa_addr;
}
}
return nullptr;
}
PosixErrorOr<int> IfAddrHelper::GetIndex(std::string name) {
return InterfaceIndex(name);
}
std::string GetAddr4Str(const in_addr* a) {
char str[INET_ADDRSTRLEN];
inet_ntop(AF_INET, a, str, sizeof(str));
return std::string(str);
}
std::string GetAddr6Str(const in6_addr* a) {
char str[INET6_ADDRSTRLEN];
inet_ntop(AF_INET6, a, str, sizeof(str));
return std::string(str);
}
std::string GetAddrStr(const sockaddr* a) {
if (a->sa_family == AF_INET) {
auto src = &(reinterpret_cast<const sockaddr_in*>(a)->sin_addr);
return GetAddr4Str(src);
} else if (a->sa_family == AF_INET6) {
auto src = &(reinterpret_cast<const sockaddr_in6*>(a)->sin6_addr);
return GetAddr6Str(src);
}
return std::string("<invalid>");
}
} // namespace testing
} // namespace gvisor