gvisor/pkg/tcpip/link/channel/channel.go

311 lines
7.9 KiB
Go

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package channel provides the implemention of channel-based data-link layer
// endpoints. Such endpoints allow injection of inbound packets and store
// outbound packets in a channel.
package channel
import (
"context"
"gvisor.dev/gvisor/pkg/sync"
"gvisor.dev/gvisor/pkg/tcpip"
"gvisor.dev/gvisor/pkg/tcpip/buffer"
"gvisor.dev/gvisor/pkg/tcpip/header"
"gvisor.dev/gvisor/pkg/tcpip/stack"
)
// PacketInfo holds all the information about an outbound packet.
type PacketInfo struct {
Pkt *stack.PacketBuffer
Proto tcpip.NetworkProtocolNumber
GSO *stack.GSO
Route stack.Route
}
// Notification is the interface for receiving notification from the packet
// queue.
type Notification interface {
// WriteNotify will be called when a write happens to the queue.
WriteNotify()
}
// NotificationHandle is an opaque handle to the registered notification target.
// It can be used to unregister the notification when no longer interested.
//
// +stateify savable
type NotificationHandle struct {
n Notification
}
type queue struct {
// c is the outbound packet channel.
c chan PacketInfo
// mu protects fields below.
mu sync.RWMutex
notify []*NotificationHandle
}
func (q *queue) Close() {
close(q.c)
}
func (q *queue) Read() (PacketInfo, bool) {
select {
case p := <-q.c:
return p, true
default:
return PacketInfo{}, false
}
}
func (q *queue) ReadContext(ctx context.Context) (PacketInfo, bool) {
select {
case pkt := <-q.c:
return pkt, true
case <-ctx.Done():
return PacketInfo{}, false
}
}
func (q *queue) Write(p PacketInfo) bool {
wrote := false
select {
case q.c <- p:
wrote = true
default:
}
q.mu.Lock()
notify := q.notify
q.mu.Unlock()
if wrote {
// Send notification outside of lock.
for _, h := range notify {
h.n.WriteNotify()
}
}
return wrote
}
func (q *queue) Num() int {
return len(q.c)
}
func (q *queue) AddNotify(notify Notification) *NotificationHandle {
q.mu.Lock()
defer q.mu.Unlock()
h := &NotificationHandle{n: notify}
q.notify = append(q.notify, h)
return h
}
func (q *queue) RemoveNotify(handle *NotificationHandle) {
q.mu.Lock()
defer q.mu.Unlock()
// Make a copy, since we reads the array outside of lock when notifying.
notify := make([]*NotificationHandle, 0, len(q.notify))
for _, h := range q.notify {
if h != handle {
notify = append(notify, h)
}
}
q.notify = notify
}
// Endpoint is link layer endpoint that stores outbound packets in a channel
// and allows injection of inbound packets.
type Endpoint struct {
dispatcher stack.NetworkDispatcher
mtu uint32
linkAddr tcpip.LinkAddress
LinkEPCapabilities stack.LinkEndpointCapabilities
// Outbound packet queue.
q *queue
}
// New creates a new channel endpoint.
func New(size int, mtu uint32, linkAddr tcpip.LinkAddress) *Endpoint {
return &Endpoint{
q: &queue{
c: make(chan PacketInfo, size),
},
mtu: mtu,
linkAddr: linkAddr,
}
}
// Close closes e. Further packet injections will panic. Reads continue to
// succeed until all packets are read.
func (e *Endpoint) Close() {
e.q.Close()
}
// Read does non-blocking read one packet from the outbound packet queue.
func (e *Endpoint) Read() (PacketInfo, bool) {
return e.q.Read()
}
// ReadContext does blocking read for one packet from the outbound packet queue.
// It can be cancelled by ctx, and in this case, it returns false.
func (e *Endpoint) ReadContext(ctx context.Context) (PacketInfo, bool) {
return e.q.ReadContext(ctx)
}
// Drain removes all outbound packets from the channel and counts them.
func (e *Endpoint) Drain() int {
c := 0
for {
if _, ok := e.Read(); !ok {
return c
}
c++
}
}
// NumQueued returns the number of packet queued for outbound.
func (e *Endpoint) NumQueued() int {
return e.q.Num()
}
// InjectInbound injects an inbound packet.
func (e *Endpoint) InjectInbound(protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
e.InjectLinkAddr(protocol, "", pkt)
}
// InjectLinkAddr injects an inbound packet with a remote link address.
func (e *Endpoint) InjectLinkAddr(protocol tcpip.NetworkProtocolNumber, remote tcpip.LinkAddress, pkt *stack.PacketBuffer) {
e.dispatcher.DeliverNetworkPacket(remote, "" /* local */, protocol, pkt)
}
// Attach saves the stack network-layer dispatcher for use later when packets
// are injected.
func (e *Endpoint) Attach(dispatcher stack.NetworkDispatcher) {
e.dispatcher = dispatcher
}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (e *Endpoint) IsAttached() bool {
return e.dispatcher != nil
}
// MTU implements stack.LinkEndpoint.MTU. It returns the value initialized
// during construction.
func (e *Endpoint) MTU() uint32 {
return e.mtu
}
// Capabilities implements stack.LinkEndpoint.Capabilities.
func (e *Endpoint) Capabilities() stack.LinkEndpointCapabilities {
return e.LinkEPCapabilities
}
// GSOMaxSize returns the maximum GSO packet size.
func (*Endpoint) GSOMaxSize() uint32 {
return 1 << 15
}
// MaxHeaderLength returns the maximum size of the link layer header. Given it
// doesn't have a header, it just returns 0.
func (*Endpoint) MaxHeaderLength() uint16 {
return 0
}
// LinkAddress returns the link address of this endpoint.
func (e *Endpoint) LinkAddress() tcpip.LinkAddress {
return e.linkAddr
}
// WritePacket stores outbound packets into the channel.
func (e *Endpoint) WritePacket(r *stack.Route, gso *stack.GSO, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) *tcpip.Error {
// Clone r then release its resource so we only get the relevant fields from
// stack.Route without holding a reference to a NIC's endpoint.
route := r.Clone()
route.Release()
p := PacketInfo{
Pkt: pkt,
Proto: protocol,
GSO: gso,
Route: route,
}
e.q.Write(p)
return nil
}
// WritePackets stores outbound packets into the channel.
func (e *Endpoint) WritePackets(r *stack.Route, gso *stack.GSO, pkts stack.PacketBufferList, protocol tcpip.NetworkProtocolNumber) (int, *tcpip.Error) {
// Clone r then release its resource so we only get the relevant fields from
// stack.Route without holding a reference to a NIC's endpoint.
route := r.Clone()
route.Release()
n := 0
for pkt := pkts.Front(); pkt != nil; pkt = pkt.Next() {
p := PacketInfo{
Pkt: pkt,
Proto: protocol,
GSO: gso,
Route: route,
}
if !e.q.Write(p) {
break
}
n++
}
return n, nil
}
// WriteRawPacket implements stack.LinkEndpoint.WriteRawPacket.
func (e *Endpoint) WriteRawPacket(vv buffer.VectorisedView) *tcpip.Error {
p := PacketInfo{
Pkt: stack.NewPacketBuffer(stack.PacketBufferOptions{
Data: vv,
}),
Proto: 0,
GSO: nil,
}
e.q.Write(p)
return nil
}
// Wait implements stack.LinkEndpoint.Wait.
func (*Endpoint) Wait() {}
// AddNotify adds a notification target for receiving event about outgoing
// packets.
func (e *Endpoint) AddNotify(notify Notification) *NotificationHandle {
return e.q.AddNotify(notify)
}
// RemoveNotify removes handle from the list of notification targets.
func (e *Endpoint) RemoveNotify(handle *NotificationHandle) {
e.q.RemoveNotify(handle)
}
// ARPHardwareType implements stack.LinkEndpoint.ARPHardwareType.
func (*Endpoint) ARPHardwareType() header.ARPHardwareType {
return header.ARPHardwareNone
}
// AddHeader implements stack.LinkEndpoint.AddHeader.
func (e *Endpoint) AddHeader(local, remote tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, pkt *stack.PacketBuffer) {
}