gvisor/test/syscalls/linux/sigaltstack.cc

276 lines
9.6 KiB
C++

// Copyright 2018 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <functional>
#include <vector>
#include "gtest/gtest.h"
#include "gtest/gtest.h"
#include "test/util/cleanup.h"
#include "test/util/fs_util.h"
#include "test/util/multiprocess_util.h"
#include "test/util/posix_error.h"
#include "test/util/signal_util.h"
#include "test/util/test_util.h"
#include "test/util/thread_util.h"
namespace gvisor {
namespace testing {
namespace {
PosixErrorOr<Cleanup> ScopedSigaltstack(stack_t const& stack) {
stack_t old_stack;
int rc = sigaltstack(&stack, &old_stack);
MaybeSave();
if (rc < 0) {
return PosixError(errno, "sigaltstack failed");
}
return Cleanup([old_stack] {
EXPECT_THAT(sigaltstack(&old_stack, nullptr), SyscallSucceeds());
});
}
volatile bool got_signal = false;
volatile int sigaltstack_errno = 0;
volatile int ss_flags = 0;
void sigaltstack_handler(int sig, siginfo_t* siginfo, void* arg) {
got_signal = true;
stack_t stack;
int ret = sigaltstack(nullptr, &stack);
MaybeSave();
if (ret < 0) {
sigaltstack_errno = errno;
return;
}
ss_flags = stack.ss_flags;
}
TEST(SigaltstackTest, Success) {
std::vector<char> stack_mem(SIGSTKSZ);
stack_t stack = {};
stack.ss_sp = stack_mem.data();
stack.ss_size = stack_mem.size();
auto const cleanup_sigstack =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaltstack(stack));
struct sigaction sa = {};
sa.sa_sigaction = sigaltstack_handler;
sigfillset(&sa.sa_mask);
sa.sa_flags = SA_SIGINFO | SA_ONSTACK;
auto const cleanup_sa =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGUSR1, sa));
// Send signal to this thread, as sigaltstack is per-thread.
EXPECT_THAT(tgkill(getpid(), gettid(), SIGUSR1), SyscallSucceeds());
EXPECT_TRUE(got_signal);
EXPECT_EQ(sigaltstack_errno, 0);
EXPECT_NE(0, ss_flags & SS_ONSTACK);
}
TEST(SigaltstackTest, ResetByExecve) {
std::vector<char> stack_mem(SIGSTKSZ);
stack_t stack = {};
stack.ss_sp = stack_mem.data();
stack.ss_size = stack_mem.size();
auto const cleanup_sigstack =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaltstack(stack));
std::string full_path;
char* test_src = getenv("TEST_SRCDIR");
if (test_src) {
full_path = JoinPath(test_src, "../../linux/sigaltstack_check");
}
ASSERT_FALSE(full_path.empty());
pid_t child_pid = -1;
int execve_errno = 0;
auto cleanup = ASSERT_NO_ERRNO_AND_VALUE(
ForkAndExec(full_path, {"sigaltstack_check"}, {}, nullptr, &child_pid,
&execve_errno));
ASSERT_GT(child_pid, 0);
ASSERT_EQ(execve_errno, 0);
int status = 0;
ASSERT_THAT(RetryEINTR(waitpid)(child_pid, &status, 0), SyscallSucceeds());
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(WEXITSTATUS(status), 0);
}
volatile bool badhandler_on_sigaltstack = true; // Set by the handler.
char* volatile badhandler_low_water_mark = nullptr; // Set by the handler.
volatile uint8_t badhandler_recursive_faults = 0; // Consumed by the handler.
void badhandler(int sig, siginfo_t* siginfo, void* arg) {
char stack_var = 0;
char* current_ss = &stack_var;
stack_t stack;
int ret = sigaltstack(nullptr, &stack);
if (ret < 0 || (stack.ss_flags & SS_ONSTACK) != SS_ONSTACK) {
// We should always be marked as being on the stack. Don't allow this to hit
// the bottom if this is ever not true (the main test will fail as a
// result, but we still need to unwind the recursive faults).
badhandler_on_sigaltstack = false;
}
if (current_ss < badhandler_low_water_mark) {
// Record the low point for the signal stack. We never expected this to be
// before stack bottom, but this is asserted in the actual test.
badhandler_low_water_mark = current_ss;
}
if (badhandler_recursive_faults > 0) {
badhandler_recursive_faults--;
Fault();
}
FixupFault(reinterpret_cast<ucontext_t*>(arg));
}
TEST(SigaltstackTest, WalksOffBottom) {
// This test marks the upper half of the stack_mem array as the signal stack.
// It asserts that when a fault occurs in the handler (already on the signal
// stack), we eventually continue to fault our way off the stack. We should
// not revert to the top of the signal stack when we fall off the bottom and
// the signal stack should remain "in use". When we fall off the signal stack,
// we should have an unconditional signal delivered and not start using the
// first part of the stack_mem array.
std::vector<char> stack_mem(SIGSTKSZ * 2);
stack_t stack = {};
stack.ss_sp = stack_mem.data() + SIGSTKSZ; // See above: upper half.
stack.ss_size = SIGSTKSZ; // Only one half the array.
auto const cleanup_sigstack =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaltstack(stack));
// Setup the handler: this must be for SIGSEGV, and it must allow proper
// nesting (no signal mask, no defer) so that we can trigger multiple times.
//
// When we walk off the bottom of the signal stack and force signal delivery
// of a SIGSEGV, the handler will revert to the default behavior (kill).
struct sigaction sa = {};
sa.sa_sigaction = badhandler;
sa.sa_flags = SA_SIGINFO | SA_ONSTACK | SA_NODEFER;
auto const cleanup_sa =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGSEGV, sa));
// Trigger a single fault.
badhandler_low_water_mark =
reinterpret_cast<char*>(&stack.ss_sp) + SIGSTKSZ; // Expected top.
badhandler_recursive_faults = 0; // Disable refault.
Fault();
EXPECT_TRUE(badhandler_on_sigaltstack);
EXPECT_THAT(sigaltstack(nullptr, &stack), SyscallSucceeds());
EXPECT_EQ(stack.ss_flags & SS_ONSTACK, 0);
EXPECT_LT(badhandler_low_water_mark,
reinterpret_cast<char*>(stack.ss_sp) + 2 * SIGSTKSZ);
EXPECT_GT(badhandler_low_water_mark, reinterpret_cast<char*>(stack.ss_sp));
// Trigger two faults.
char* prev_low_water_mark = badhandler_low_water_mark; // Previous top.
badhandler_recursive_faults = 1; // One refault.
Fault();
ASSERT_TRUE(badhandler_on_sigaltstack);
EXPECT_THAT(sigaltstack(nullptr, &stack), SyscallSucceeds());
EXPECT_EQ(stack.ss_flags & SS_ONSTACK, 0);
EXPECT_LT(badhandler_low_water_mark, prev_low_water_mark);
EXPECT_GT(badhandler_low_water_mark, reinterpret_cast<char*>(stack.ss_sp));
// Calculate the stack growth for a fault, and set the recursive faults to
// ensure that the signal handler stack required exceeds our marked stack area
// by a minimal amount. It should remain in the valid stack_mem area so that
// we can test the signal is forced merely by going out of the signal stack
// bounds, not by a genuine fault.
uintptr_t frame_size =
static_cast<uintptr_t>(prev_low_water_mark - badhandler_low_water_mark);
badhandler_recursive_faults = (SIGSTKSZ + frame_size) / frame_size;
EXPECT_EXIT(Fault(), ::testing::KilledBySignal(SIGSEGV), "");
}
volatile int setonstack_retval = 0; // Set by the handler.
volatile int setonstack_errno = 0; // Set by the handler.
void setonstack(int sig, siginfo_t* siginfo, void* arg) {
char stack_mem[SIGSTKSZ];
stack_t stack = {};
stack.ss_sp = &stack_mem[0];
stack.ss_size = SIGSTKSZ;
setonstack_retval = sigaltstack(&stack, nullptr);
setonstack_errno = errno;
FixupFault(reinterpret_cast<ucontext_t*>(arg));
}
TEST(SigaltstackTest, SetWhileOnStack) {
// Reserve twice as much stack here, since the handler will allocate a vector
// of size SIGTKSZ and attempt to set the sigaltstack to that value.
std::vector<char> stack_mem(2 * SIGSTKSZ);
stack_t stack = {};
stack.ss_sp = stack_mem.data();
stack.ss_size = stack_mem.size();
auto const cleanup_sigstack =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaltstack(stack));
// See above.
struct sigaction sa = {};
sa.sa_sigaction = setonstack;
sa.sa_flags = SA_SIGINFO | SA_ONSTACK;
auto const cleanup_sa =
ASSERT_NO_ERRNO_AND_VALUE(ScopedSigaction(SIGSEGV, sa));
// Trigger a fault.
Fault();
// The set should have failed.
EXPECT_EQ(setonstack_retval, -1);
EXPECT_EQ(setonstack_errno, EPERM);
}
TEST(SigaltstackTest, SetCurrentStack) {
// This is executed as an exit test because once the signal stack is set to
// the local stack, there's no good way to unwind. We don't want to taint the
// test of any other tests that might run within this process.
EXPECT_EXIT(
{
char stack_value = 0;
stack_t stack = {};
stack.ss_sp = &stack_value - kPageSize; // Lower than current level.
stack.ss_size = 2 * kPageSize; // => &stack_value +/- kPageSize.
TEST_CHECK(sigaltstack(&stack, nullptr) == 0);
TEST_CHECK(sigaltstack(nullptr, &stack) == 0);
TEST_CHECK((stack.ss_flags & SS_ONSTACK) != 0);
// Should not be able to change the stack (even no-op).
TEST_CHECK(sigaltstack(&stack, nullptr) == -1 && errno == EPERM);
// Should not be able to disable the stack.
stack.ss_flags = SS_DISABLE;
TEST_CHECK(sigaltstack(&stack, nullptr) == -1 && errno == EPERM);
exit(0);
},
::testing::ExitedWithCode(0), "");
}
} // namespace
} // namespace testing
} // namespace gvisor